конечным числом символов. Эти символы, правда, могут быть связаны с понятием бесконечности, но связь эта такова, что ее можно установить за конечное число шагов. Так, когда в случае математической индукции мы доказываем теорему, зависящую от параметра
Я сам в прошлом ученик Рассела и многим обязан его влиянию. Д-р Шеннон взял как тему своей докторской диссертации в Массачусетсском технологическом институте применение методов классической булевой алгебры классов к изучению переключательных систем в электротехнике[100]. Тьюринг был, пожалуй, первым среди ученых, исследовавших логические возможности машин с помощью мысленных экспериментов. Во время войны он работал для английского правительства в области электроники. В настоящее время он возглавляет программу по созданию вычислительных машин современного образца, принятую Национальной физической лабораторией в Теддингтоне.
Другим молодым ученым, перешедшим из математической логики в кибернетику, был Уолтер Питтс. Он был учеником Карнапа в Чикаго и был связан с проф. Рашевским и его школой биофизиков. Заметим попутно, что эта последняя группа сделала очень много для того, чтобы направить внимание ученых- математиков на возможности биологических наук. Правда, некоторым из нас кажется, что она находится под слишком большим влиянием задач об энергии и потенциалах и методов классической физики, чтобы наилучшим образом решать задачи по изучению систем, подобных нервной системе, которые весьма далеки от энергетической замкнутости. [c.59]
Г-н Питтс весьма удачно попал под влияние Мак-Каллоха; они вместе начали работать над проблемами, связанными с соединением нервных волокон синапсами в системы, обладающие заданными общими свойствами. Независимо от Шеннона они использовали аппарат математической логики для решения проблем, являющихся прежде всего переключательными проблемами. Мак-Каллох и Питтс ввели принципы, остававшиеся в тени в ранней работе Шеннона, хотя и вытекающие, несомненно, из идей Тьюринга: использование времени как параметра, рассмотрение сетей, содержащих циклы, и рассмотрение синаптических и других задержек[101].
Летом 1943 г. я встретил д-ра Дж. Леттвина из Бостонской городской больницы, весьма интересовавшегося вопросами, связанными с нервными механизмами. Он был близким другом г-на Питтса и познакомил меня с его работой[102]. Он убедил Питтса приехать в Бостон и встретиться с д-ром Розенблютом и со мной. Мы с радостью пригласили его в нашу группу. Г-н Питтс перешел в Массачусетсский технологический институт осенью 1943 г., чтобы работать вместе со мной и чтобы углубить свою математическую подготовку для исследований в этой науке — кибернетике, к тому времени уже родившейся, но еще не окрещенной.
Г-н Питтс был тогда основательно знаком с математической логикой и нейрофизиологией, но не имел случая сколько-нибудь близко соприкасаться с техникой. В частности, он не был знаком с работой д-ра Шеннона и недостаточно ясно представлял себе возможности электроники. Он очень заинтересовался, когда я показал ему образцы современных вакуумных ламп и объяснил, что они являются идеальным средством для реализации в металле эквивалентов рассматриваемых им нейронных сетей и систем. С этого времени нам стало [c.60] ясно, что сверхбыстрая вычислительная машина, поскольку вся она строится на последовательном соединении переключательных устройств, является идеальной моделью для решения задач, возникающих при изучении нервной системы. Возбуждение нейронов по принципу «все или ничего» в точности подобно однократному выбору, производимому при определении разряда двоичного числа; а двоичная система счисления уже признавалась не одним из нас за наиболее удовлетворительную основу для проектирования вычислительных машин. Синапс есть не что иное, как механизм, определяющий, будет ли некоторая комбинация выходных сигналов от данных предыдущих элементов служить подходящим стимулом для возбуждения следующего элемента или нет; тем самым синапс в точности подобен устройствам вычислительной машины. Наконец, проблема объяснения природы и разновидностей памяти у животных находит параллель в задаче создания искусственных органов памяти для машин.
Тем временем оказалось, что создание вычислительных машин имеет гораздо более важное значение для военных целей, чем предполагал ранее д-р Буш. Строительство новых машин развернулось в нескольких центрах, и притом в направлении, которое не очень отличалось от указанного в моем первом докладе. Гарвардский университет, испытательный полигон в Абердине и Пенсильванский университет уже построили вычислительные машины, а Институт высших исследований в Принстоне[103] и Массачусетсский технологический институт должны были к этому вскоре приступить. В программе строительства вычислительных машин наблюдался постепенный переход от механических систем к электрическим, от десятичной системы счисления к двоичной, от механического реле к электрическому, от ручного управления операциями к автоматическому управлению. Короче говоря, каждая новая машина все более и более походила на образец, описанный в том докладе, [c.61] который я в свое время направил д-ру Бушу. Множество народа жадно интересовалось этими вопросами; у нас была возможность передавать свои идеи коллегам, в частности д-ру Эйкену из Гарвардского университета, д-ру фон Нейману из Института высших исследований и д-ру Голдстайну, работавшему над машинами ЭНИАК[104] и ЭДВАК[105] в Пенсильванском университете. Везде нас внимательно выслушивали, и скоро словарь инженеров стал пестреть выражениями, употребляемыми нейрофизиологами и психологами.
На этой стадии работ д-р Нейман и я сочли необходимым провести объединенное совещание всех интересующихся тем, что мы сейчас называем кибернетикой. Такое совещание было организовано в Принстоне в конце зимы 1943-1944 гг. Присутствовали и инженеры, и физиологи, и математики. Д-р Розенблют не мог быть среди нас, так как он только что принял приглашение на должность заведующего лабораторией физиологии в Национальном институте кардиологии в Мексике; но от физиологов присутствовали д-р Мак-Каллох и д-р Лоренте де Но из Рокфеллеровского института. Д-р Эйкен не смог присутствовать, но в совещании участвовало несколько конструкторов вычислительных машин и среди них д-р Голдстайн. Д-р фон Нейман, г-н Питтс и я представляли математиков. Физиологи сделали совместное изложение задач кибернетики с их точки зрения, аналогичным образом конструкторы вычислительных машин изложили свои цели и методы. В конце совещания всем стало ясно, что существует значительная идейная общность между работниками разных [c.62] специальностей, что представители каждой группы уже могут пользоваться понятиями, выработанными представителями других групп, и что поэтому необходимо попытаться создать общую для всех терминологию.
Значительно раньше военная исследовательская группа, руководимая д-ром Уорреном Уивером, выпустила отчет, сначала секретный, а затем для ограниченного пользования, где излагалась работа г-на Бигелоу и моя по предсказывающим приборам и волновым фильтрам[106]. Было установлено, что конструирование специальных приборов для криволинейного предсказания не оправдывается условиями ведения зенитного огня. Но принципы оказались верными и были использованы государственными органами при решении задач на сглаживание и в некоторых смежных областях. В частности, оказалось, что интегральное уравнение того типа, к которому сводится рассматриваемая нами задача вариационного исчисления, появляется в проблемах волноводов и во многих других проблемах прикладной математики. Таким образом, к концу войны идеи теории предсказания, идеи статистического подхода к технике связи так или иначе стали уже знакомы значительной части статистиков и инженеров-связистов в Соединенных Штатах и Великобритании; кроме моего военного отчета, ныне совершенно разошедшегося, к этому времени вышло большое число