IP не использует технологию многоточечной линии связи, и передаваемые в кадрах HDLC датаграммы IP имеют своим адресом двоичное значение 11111111 (шестнадцатеричное X'FF), которое называется широковещательным адресом (broadcast), определяющим пересылку кадра на все станции сети. (Далее в книге для записи шестнадцатеричных чисел используется формат X'N, где X указывает на шестнадцатеричное число, N — представляет само число, а ''' — разделяет два поля такой записи.— Прим. пер.)

Заголовок кадра HDLC имеет поле управления (control). Некоторые протоколы связи помещают в это поле номера пересылаемых кадров или номера кадров для подтверждения их получения. Примерами могут служить протоколы SDLC и LAPB, использующие поле управления для нумерации, подтверждения приема и повторной трансляции кадров. Такие протоколы выполняют повторную пересылку тех кадров, для которых не получено подтверждение их получения приемником за заданный интервал времени.

Кадры, переносящие датаграммы IP, как и кадры для пересылки данных других протоколов, например IPX или DECnet, не требуют нумерации и подтверждения. Для IP и других похожих протоколов в управляющем поле записывается значение X'03, указывающее на нечисловой информационный кадр (Unnumbered Information frame) протокола HDLC.

Таким образом, датаграммы IP в кадрах HDLC имеют формат, представленный на рис. 4.7.

Рис. 4.7. Формат кадра HDLC, передающего датаграмму IP

Обобщив, можно отметить, что при пересылке датаграмм IP в кадрах HDLC:

■ Используется широковещательный адрес X'FF.

■ Управляющее поле имеет значение X'03 — нечисловой информационный кадр.

4.6.2 Недостатки HDLC

То, что HDLC является стандартом, еще не означает успешного взаимодействия друг с другом связей 'точка-точка' между различными реализациями интерфейсов HDLC.

В HDLC определено множество дополнительных и необязательных возможностей, что приводит к различным 'стандартным' реализациям HDLC. Еще более запутывает ситуацию предоставление многими разработчиками собственных версий HDLC для интерфейсов 'точка-точка'.

В результате долгое время не было единого стандарта для коммуникаций 'точка-точка', что существенно затрудняло использование оборудования от различных производителей.

Разработка HDLC была выполнена до появления многопротокольных сетей. Однако сегодня многие линии 'точка-точка' служат для пересылки трафика от различных протоколов, что приводит к дополнительным проблемам.

Решение этих вопросов поручено комитету IETF.

4.7 Протокол PPP

Рабочая группа IETF предложила решение на основе протокола 'точка- точка' (Point-to-Point Protocol — PPP). PPP может использоваться в любой полнодуплексной цепи — синхронной с пересылкой битов или асинхронной (старт/стоп) с пересылкой байтов. Этот протокол пригоден для медленных последовательных линий связи, быстрых выделенных линий, ISDN или волоконно-оптических каналов SONET. PPP был разработан для пересылки PDU различных протоколов — IP, IPX, DECnet, ISO и т.д. Кроме того, PPP обеспечивает пересылку данных через сетевые мосты.

PPP содержит несколько подпротоколов. Например:

■ Протокол управления связью (Link Control Protocol) служит для установки, проверки, конфигурирования и закрытия сетевой связи.

■ Протокол управления сетью (Network Control Protocol) предназначен для инициализации, конфигурирования и завершения использования отдельного сетевого протокола. Индивидуальный протокол Network Control Protocol определен для IP, IPX, DECnet, ISO и т.д.

Типичный сценарий РРР выполняется следующим образом:

■ Начинающая соединение по PPP система посылает кадр Link Control. Ее партнер отвечает дополнительным кадром Link Control, устанавливая параметры связи.

■ Проводится обмен кадрами Network Control Protocol для выбора и конфигурирования используемых протоколов сетевого уровня.

■ Данные выбранного протокола пересылаются по связи в кадрах PPP. Каждый кадр имеет поле заголовка, идентифицирующее тип протокола для содержащихся в кадре данных.

■ Для завершения связи применяется обмен кадрами Link Control и Network Control.

Заголовок кадра PPP похож на заголовок HDLC, но содержит одно дополнительное поле для идентификации протокола следующего уровня. На рис. 4.8 показан формат кадра PPP с датаграммой IP. Адресное поле имеет значение X'FF (широковещательная рассылка), а управляющее поле — X'03 (нечисловая информация). Дополнительное поле протокола (protocol field) имеет значение X'00-21, что соответствует пересылке датаграмм IP. Номера для протоколов определены в документе RFC Assigned Numbers (присвоенные номера) от IANA.

Рис. 4.8. Формат кадра PPP, переносящего датаграмму IP

4.7.1 Сжатие в PPP

Может показаться не очень разумным включение одних и тех же октетов адреса и управления в каждый кадр. Партнеры на каждом конце связи PPP могут работать в режиме сжатия (compression) для исключения этих полей.

Значения в поле протокола указывают, является ли содержимое кадра сообщением Link Control или Network Control, либо полезной информацией (например, датаграммой IP). При установке связи по PPP поле протокола имеет длину 16 бит, но далее при пересылке полезной информации его длина может быть сокращена до 8 бит. Следовательно, датаграмма может быть пакетирована более эффективно (см. рис. 4.9).

Рис. 4.9. Кадр PPP в сжатом формате

Еще одной возможностью в PPP является сжатие методом Вана Джекобсона, позволяющее исключить лишние байты, пересылаемые в сеансе TCP. Заголовки IP и TCP вместе имеют длину от 40 байт и более. Сжатие методом Вана Джекобсона уменьшает типичную 40-байтовую комбинацию до 3, 4 или 5 байт. Для этого оба партнера должны сохранять первоначальные заголовки. При изменениях во время сеанса TCP будут пересылаться только измененные значения в заголовках. Поскольку большая часть используемой в заголовках информации имеет статическую природу, объем пересылаемых изменений будет незначителен.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату