стали думать о том, как бы сделать плазменный разряд устойчивее, долговечнее, горячее.
И опять в авангарде разведчиков искусственного солнца шли физики нашей страны.
В тонком, кропотливом труде текли будни лабораторий. Успехи часто сменялись неудачами, но шаг за шагом труднейшая задача решалась.
Дальше продвинулись и эксперименты, о которых мы рассказали в этой главе, — изучение разрядов в прямых трубках.
В сентябре 1958 года, на Второй международной конференции по мирному использованию атомной энергии, советские исследователи подробно доложили об этих новых опытах.
Как еще выше поднять температуру плазменного разряда в прямой трубке?
Уж раз жизнь плазмы в таком разряднике коротка, надо усилить электрический удар по ней, сделать его более резким. Для этого требуется выше поднять напряжение, подводимое к трубке, и постараться, чтобы установка как бы меньше «пружинила», тормозила ток. На языке электротехники это значило — свести к минимуму индуктивность, мешающую быстрому развитию процесса.
Остроумные усовершенствования помогли сотрудникам Института атомной энергии значительно сократить индуктивность разрядных устройств и довести напряжение, подаваемое к трубке, более чем до 100 тысяч вольт. Нарастание силы тока в электрическом разрядном импульсе было резко ускорено, и в результате плазму удалось раскалить, по самым осторожным оценкам, до температуры свыше 3—4 миллионов градусов! То был новый рекорд лабораторного нагрева вещества.
Столь сильно разогретая плазма стала заметно излучать нейтроны. И теперь уже многие из них можно было считать вестниками затеплившегося огонька термоядерного синтеза.
Правда, нейтронов выделялось еще очень мало. Да и не все физики были согласны в их безусловной принадлежности «к благородной расе потомков термоядерных реакций», считая их «детищами темного ускорительного процесса» (слова академика Л. А. Арцимовича). Однако возникшие поначалу споры об источнике нейтронного излучения плазмы вскоре были признаны бесполезными. И без них задача оставалась ясной: выше и выше поднимать температуру плазмы. Когда при каждом импульсе станет выделяться больше триллиона нейтронов, никто не усомнится в факте начала термоядерного процесса.
Опыты с разрядами в прямых трубках, с которыми связан начальный период борьбы за искусственное солнце, принесли колоссальную пользу науке. Они будут разворачиваться и впредь, помогая улавливать тончайшие закономерности поведения сверхгорячей плазмы.
И все же в наши дни приходится признать, что такие разрядные устройства едва ли послужат прообразами мирных термоядерных реакторов будущего. Слишком уж грубо в них электрический ток обращается с плазмой: бьет ее молниеносным ударом исполинской силы. Подсчитано, что для эффективного освобождения термоядерной энергии такой удар должен иметь мощность взрыва 10 тонн тола! Еще более мощным стал бы ответный удар освободившейся в плазме энергии синтеза ядер. Ясно, справиться с подобными взрывами техника практически не сможет.
Значит, с плазмой надо обращаться осторожнее.
4. РАСКАЛЕННЫЙ ВИХРЬ
История обуздания реакций синтеза совсем не похожа на путь освоения процессов деления атомных ядер. Расщепление ядер урана сначала было осуществлено в простейшем реакторе, и лишь потом появилась атомная бомба. Синтез гелия, наоборот, начался на Земле чудовищным водородным взрывом. И только после этого усилия исследователей сосредоточились на поисках реактора для управляемого процесса ядерного синтеза.
Сначала в термоядерной бомбе на плазму научились обрушивать гигантский удар атомного взрыва. И она отвечала катастрофой водородного взрыва. Потом в лабораторных условиях в прямых разрядных трубках испробовали молниеносный электрический удар по плазме, влекущий за собой такое же быстрое ее магнитное сжатие и разогрев. Итоги этих опытов, как мы видели, тоже не слишком обнадежили разведчиков мирного термоядерного синтеза. И здесь плазма оказалась взрывоопасна.
Иное дело, если бы удалось «вежливо» разогреть ее. Тогда она столь же спокойно выделила бы энергию синтеза своих атомных ядер. Не мгновенный удар, а сравнительно медленный напор — вот к чему надо стремиться. Конечно, скорость подъема температуры должна все же быть достаточно большой, чтобы выполнялось знакомое нам уже условие обгона нагревом нарастающего излучения энергии раскаленной плазмой. Но в сильно разреженном виде плазма почти прозрачна и излучает сравнительно мало энергии. Такую плазму можно сжать и довести до гигантских температур сравнительно медленно, не нарушая равновесия между ее газовым давлением и внешним сжатием.
Осторожный, «вежливый» не приводящий ни к каким взрывам режим разогрева плазмы, как показали теоретические изыскания, возможен. Но прямые разрядные трубки для этого не годятся. Вся беда — в электродах, подводящих ток. В прямой трубке заряженные частицы, едва возникнув, мчатся к электродам и выбывают из игры. Потому-то там и коротка жизнь плазмы.
Есть еще одна помеха развитию высокой температуры при разряде в прямых трубках. Мы помним, что тепловую энергию там помогает сберечь «шуба» собственного магнитного поля. Однако эта шуба оставляет в ручье плазмы уязвимые места: ведь шнур огражден от холода лишь с боков. Хоть стенок трубки он не касается, но до электродов дотрагивается. И при медленных, «вежливых» разрядах контакт с холодными электродами грозит отсосать из плазмы значительную долю ее столь трудно добытого звездного жара. «Жаропонижающим» служат тяжелые атомы материала электродов.
Во время разряда они врываются в плазму из электродов, будто струя пены из огнетушителя в пылающий костер. Словом, электроды весьма нежелательны. Они гасят жар плазмы, неминуемо остужают ее.
Где же выход?
А что, если попытаться осуществить плазменный разряд, не прибегая к услугам электродов? Пусть, например, плазма вихрем несется по кольцу и не натыкается ни на какие электроды! Ведь это сразу увеличило бы ее жизнь. Разряд получился бы куда долговечнее, нарастание тока можно было бы сделать гораздо плавнее, удар по плазме смягчился бы. Вместе с тем кольцевой безэлектродный разряд укутал бы плазму в магнитное одеяло «с головой и ногами», избавил ее от вредного леденящего балласта тяжелых ядер, вылетающих из электродов.
Как видите, кольцевой разряд — дело заманчивое.
Но как его осуществить?
Непосвященному кажется, что проводники, подводящие к плазме ток, совершенно необходимы. Но физики и здесь нашли остроумный выход.
Кому не известно простейшее электротехническое устройство — трансформатор. Его можно увидеть в любом радиоприемнике. Назначение трансформатора—преобразовывать переменный ток: из тока высокого напряжения получать ток низкого напряжения и наоборот. Достигается это просто. На железный сердечник помещены две изолированные друг от друга обмотки: первичная, на которую подается преобразуемый ток, и вторичная, откуда снимается ток преобразованный. Переменный ток первичной обмотки создает переменное магнитное поле и железном сердечнике. А оно, в свою очередь, наводит переменный ток во вторичную обмотку, намотанную на тот же сердечник. Вот и все. Причем обратите внимание: вторичная обмотка не имеет никакого контакта с первичной. А для возбуждения кольцевого плазменного разряда как