Минует еще огромный промежуток времени — в среднем 32 миллиона лет. Лишь на его протяжении ядро азо

та-14 оказывается способным захватить новый (третий по счету) свободный протон и превратиться, испустив опять гамма-фотон, в неустойчивое ядро кислорода-15

Ядро кислорода-15 живет совсем недолго — в среднем всего 3 минуты. Распадаясь, оно переделывает один из своих протонов в нейтрон. При этом испускаются позитрон и нейтрино. Так кислородное ядро преобразуется

Наконец, в среднем еще спустя 110 тысяч лет, ядро азота-15 поглощает последний — четвертый протон, тут же выбрасывает из себя альфа- частицу, гамма-квант и преобразуется в ядро углерода-12, с которого, как вы помните, и начинался цикл:

Как видите, углеродные ядра, вбирая в себя протоны и в связи с этим переделываясь в ядра азота и кислорода, соединяют четыре протона в альфа-частицу. Существенно, что сам углерод при этом не расходуется. Он служит именно «поваром» — возбудителем цепочки реакций, с той, правда, разницей, что обычный повар работает руками, а ядра углерода — всем своим существом. Поэтому их и уместнее сравнить с молочнокислыми бактериями, которые приготавливают простоквашу из молока, На языке науки это означает, что ядра углерода являются катализатором процесса.

Нам остается еще оценить скорость освобождения энергии в углеродном цикле. Она определяется, как и в протонно-протонном, длительностью самой медленной операции «конвейера», то есть третьей реакцией, и, стало быть, составляет в среднем 32 миллиона лет на каждый цикл. Это гораздо быстрее протонно-протонного синтеза.

ТЕОРИЯ И ОПЫТ

Мы осыпали читателя градом ничтожных вероятностей и невообразимо огромных промежутков времени: 100 тысяч лет, 32 миллиона лет, 14 миллиардов лет! Вы вправе спросить: а откуда, собственно говоря, такая уверенность? Ведь никакой бессмертный Агасфер не сидел в глубинах Солнца с часами и календарем!

Уверенность даруется прежде всего той же тысячи раз проверенной квантовой механикой. Именно она открыла возможность построить строгую не только качественную, но и количественную гипотезу о солнечных ядерных процессах.

Однако, чтобы любая гипотеза стала всесторонне обоснованной теорией, нужно найти ей подтверждение в наблюдениях и опытах.

С наблюдениями дело обстоит неплохо.

Скорости реакций в условиях солнечных недр вычислить просто. Из этих данных нетрудно подсчитать мощность солнечного лучистого потока. С другой стороны, мощность Солнца измерена давно и вполне надежно из результатов наблюдений светила. Подсчеты показывают, что потребности Солнца в энергии вполне удовлетворяются протонно-протонным циклом. Углеродный «конвейер», очевидно, играет небольшую роль.

Но, кроме наблюдений, физикам доступны и прямые опыты, пригодные для проверки теоретических выводов о скоростях солнечных ядерных реакций.

Подобные эксперименты ставятся при помощи ядерных «артиллерийских орудий» — ускорителей. В них заряженные микрочастицы разгоняются электрическими и магнитными полями и направляются на особые мишени. В результате ядерные «снаряды» и атомные ядра мишени взаимодействуют, излучают гамма-фотоны, вновь рожденные частицы и т. д. Все это регистрируется специальными счетчиками, индикаторами, и по полученным сведениям физики могут судить о вероятности тех или иных реакций, об их продуктах, о тончайших .нюансах их хода.

Вот что любопытно: в лаборатории воссоздаются ядерные реакции при гораздо более высоких энергиях движения частиц, чем это бывает на Солнце. Воспроизвести же реакции на обычных для светила энергиях не удается — они слишком малы и потому «загрязнены» внешними влияниями. К тому же вероятности многих солнечных процессов настолько ничтожны, что ждать их реализации в ускорителях пришлось бы тысячи и миллионы лет.

Вот почему экспериментаторы предпочитают всесторонне изучить ускоренные процессы, а потом, на основе полученных сведений и данных теории, высказывать суждения об их замедленном осуществлении в естественных условиях солнечных недр. Таким методом получены доказательства того, что все солнечные реакции разрешены и при соответствующих условиях происходят с полной неизбежностью.

Теоретическая ядерная физика и опыты на ускорителях подробно рассказывают о том, как зависит скорость солнечных реакций от температуры.

Вы помните, температура есть не что иное, как средняя энергия теплового движения частичек. На ускорителях же энергию «снарядов», бьющих по «мишени», можно изменять в широких пределах.

Как видите, наука в состоянии не только искусственно вызвать реакции, подобные тем, что даруют свет Солнцу, но даже менять их скорость по своему усмотрению. Правда, отсюда еще весьма далеко до энергетического освоения солнечных процессов. Энергия, освобождающаяся в ускорителях, совершенно ничтожна, и, главное, она не вызывает самоподдерживающегося цепного процесса. На ускорение частиц затрачивается большая энергия, а подавляющее большинство их бьет мимо цели. Поэтому энергии расходуется гораздо больше, чем выделяется.

Но познавательное, исследовательское значение опытов с ускорителями огромно.

К каким же заключениям они ведут?

Объединяя данные эксперимента с теорией, можно утверждать следующее.

Протонно-протонный цикл оказывается не слишком сильно зависящим от температуры. Первая ступень его остается чрезвычайно маловероятной даже при колоссальных скоростях сталкивающихся протонов (кстати, реакцию слияния ядер водорода в дейтон на ускорителе изучить не удалось, о ней судят по иным реакциям и выводам теории).

Зато углеродный «конвейер» очень чувствителен к переменам температуры и интенсивно развивается при ее повышении. Видимо, в звездах, более горячих, чем Солнце, он играет основную роль.

Подводим итоги

Итак, экспериментальная и теоретическая ядерная физика с помощью астрономии разгадала тайну солнечной «кухни». Из исходного продукта — водорода—там готовится одно-единственное «блюдо» — гелий, а свет и тепло представляют собой не что иное, как отходы производства, вроде картофельных очисток и яичной скорлупы. Правда, эти отходы совсем не бесполезный материал, как на настоящей кухне. Тепло солнечных недр и вызывает ядерные реакции, которые поэтому называются термоядерными: от слова «термо» — тепло.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату