Происходит типичное капиллярное явление. Если рассмотреть промокательную бумагу в микроскоп, то можно увидеть ее структуру. Такая бумага состоит из неплотной сетки бумажных волокон, образующих друг с другом тонкие и длинные каналы. Эти каналы и играют роль капиллярных трубочек.

Такая же система длинных пор или каналов, образованных волокнами, имеется в фитилях. По фитилю поднимается кверху керосин в лампах. С помощью фитиля можно создать и сифон, опустив фитиль одним концом в неполный стакан жидкости так, чтобы другой конец перевешивающийся через борт, был ниже первого (рис. 2.5).

Рис. 2.5

В технологии красильного производства тоже часто используют способность тканей затягивать в себя жидкость тонкими каналами, образованными нитями ткани.

Но мы еще ничего не сказали о молекулярном механизме этих интересных явлений.

Различия в поверхностных силах превосходно объясняются межмолекулярными взаимодействиями.

Капля ртути не растекается по стеклу. Это происходит по той причине, что энергия взаимодействия атомов ртути между собой больше энергии связи атомов стекла и ртути. По этой же причине ртуть не поднимается в узких капиллярах.

С водой дело обстоит иначе. Оказывается, что атомы водорода молекул воды охотно цепляются за атомы кислорода окиси кремния, из которой в основном состоит стекло. Межмолекулярные силы вода - стекло больше межмолекулярных сил вода - вода. Поэтому вода растекается по стеклу и поднимается в стеклянных капиллярах.

Поверхностные силы, вернее энергию связи (глубина ямы на рис. 2.1), для разных пар веществ можно и измерить, и вычислить. Разговор о том, как это делается, завел бы нас слишком далеко.

Кристаллы и их форма

Многие думают, что кристаллы - это красивые, редко встречающиеся камни. Они бывают разных цветов, обычно прозрачные и, что самое замечательное, обладают красивой правильной формой. Чаще всего кристаллы представляют собой многогранники стороны (грани) их идеально плоские,' ребра строго прямые. Они радуют глаз чудесной игрой света в гранях, удивительной правильностью строения.

Есть среди них скромные кристаллы каменной соли - природного хлористого натрия, т. е. обычной поваренной соли. Они встречаются в природе в виде прямоугольных параллелепипедов или кубиков. Простая форма и у кристаллов кальцита - прозрачных косоугольных параллелепипедов. Куда сложнее кристаллы кварца. У каждого кристаллика множество граней разной формы, пересекающихся по ребрам разной длины.

Однако кристаллы - совсем не музейная редкость. Кристаллы окружают нас повсюду. Твердые тела, из которых мы строим дома и делаем станки, вещества, которые мы употребляем в быту,- почти все они относятся к кристаллам. Почему же мы этого не видим? Дело в том, что в природе редко попадаются тела в виде отдельных одиночных кристаллов (или, как говорят, монокристаллов). Чаще всего вещество встречается в виде прочно сцепившихся кристаллических зернышек уже совсем малого размера - меньше тысячной доли миллиметра. Такую структуру можно увидеть лишь в микроскоп.

Тела, состоящие из кристаллических зернышек, называются мелкокристаллическими, или поликристаллическими ('поли'-по-гречески 'много').

Конечно, к кристаллам надо отнести и мелкокристаллические тела. Тогда окажется, что почти все окружающие пас твердые тела - кристаллы. Песок и гранит, медь и железо, салол, продающийся в аптеке,; и краски - все это кристаллы.

Есть и исключения; стекло и пластмассы не состоят из кристалликов. Такие твердые тела называются аморфными.

Итак, изучать кристаллы- это значит изучать почти все окружающие нас тела. Понятно, как это важно.

Одиночные кристаллы сразу же узнают по правильности форм. Плоские грани и прямые ребра являются характерным свойством кристалла; правильность формы несомненно связана с правильностью внутреннего строения кристалла. Если кристалл в каком-то направлении особо вытянулся, значит, и строение кристалла в этом направлении какое-то особенное.

Но представьте себе, что из крупного кристалла на станке изготовлен шар. Удастся ли сообразить, что в руках у нас кристалл, и отличить этот шар от стеклянного? Поскольку разные грани кристалла развиты в различной степени, то это наводит на мысль о том, что и физические свойства кристалла неодинаковы в разных направлениях. Сказанное относится к прочности, электропроводности, да и вообще ко многим свойствам. Эта особенность кристалла называется анизотропией его свойств. Анизотропный - это значит разный в разных направлениях.

Кристаллы анизотропны. Напротив, аморфные тела, жидкости и газы изотропны ('изо' - по-гречески 'одинаково', 'тропос' -- направление), т. е. обладают одинаковыми свойствами в разных направлениях. Анизотропия свойств и позволяет узнать,( является ли прозрачный бесформенный кусочек вещества кристаллом или нет.

Отправимся в минералогический музей и внимательно рассмотрим разные монокристаллические образцы кристаллов одного и того же вещества. Вполне возможно, что на стенде будут выставлены образцы и правильной и неправильной формы. Некоторые кристаллы будут выглядеть как обломки,- другие будут иметь 1-2 грани 'ненормального' развития.

Отберем из общей кучи образцы, которые покажутся нам идеальными, и зарисуем их. Картинка, которая получится, показана на рис. 2.6. В качестве примера выбран все тот же кварц. У кварца, как и у других кристаллов, может развиться разное число граней одного 'сорта', а также разное число самих 'сортов' граней. Пусть внешнее сходство не бросается в глаза, все же такие кристаллики похожи друг на друга, как близкие родственники, как близнецы. В чем же заключается их сходство?

Рис. 2.6

Посмотрите на рис. 2.6, где изображен ряд кристаллов кварца. Все эти кристаллики - близкие 'родственники'. Их можно сделать и совсем одинаковыми, сошлифовывая грани на различную глубину параллельно самим себе. Легко видеть, что таким способом, например, кристалл II может быть сделан совершенно таким же, как кристалл I. Это возможно потому, что углы между сходственными гранями образцов одинаковы' например, между гранями А и Б, Б и В и т. д.

В этом равенстве углов и заключается 'семейное' сходство кристаллов. При сошлифовывании граней параллельно самим себе форма кристалла изменяется, но углы между гранями сохраняют свое значение.

При росте кристалла в зависимости от ряда случайностей одни грани могут попасть в условия более благоприятные, другие в менее удобные для увеличения своих размеров. Внешнее сходство выросших в разных условиях образцов станет незаметным, но углы между сходственными гранями всех кристаллов изучаемого вещества будут всегда одинаковы. Форма кристалла случайна, а углы между гранями отвечают (вы дальше поймете, почему) его внутренней природе.

Но плоскогранность не является единственным свойством кристаллов, которое отличает их от бесформенных тел. Кристаллы обладают симметрией. Смысл этого слова лучше всего мы поймем на примерах.

Рис. 2.7

На рис. 2.7 изображена скульптура; перед ней стоит большое зеркало. В зеркале возникает отражение, в точности повторяющее предмет. Скульптор может изготовить две фигуры и расположить их так же, как фигуру и ее отражение в зеркале. Эта 'двойная' скульптура будет симметричной фигурой - она состоит из двух зеркально равных частей. Правая часть скульптуры в точности совпадает с отражением левой ее

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату