нагнетающей топливо в цилиндр. Оно воспламеняется по мере поступления, чем устраняется опасность детонации, существенная для бензинового двигателя.

Устранение опасности детонации позволяет строить тихоходные судовые дизели на много тысяч лошадиных сил. Они, естественно, приобретают весьма значительные размеры, но остаются компактнее агрегата из парового котла и турбины.

Суда, снабженные дизельными двигателями, без особой логики называются в нашей литературе теплоходами.

Корабль, на котором между дизелем и винтом стоят генератор и мотор постоянного тока, называют 'дизель-электроход'.

Дизельные локомотивы - тепловозы, широко внедряемые сейчас на железных дорогах,- построены по той же схеме,; поэтому их можно называть 'дизельэлектровозами'.

Поршневые двигатели внутреннего сгорания, рассмотренные нами в последнюю очередь, заимствовали основные конструктивные элементы - цилиндр, поршень, получение вращательного движения при помощи шатунно-кривошипного механизма - у постепенно сходящей сейчас со сцены паровой машины. Паровую машину можно было бы назвать 'поршневым двигателем внешнего сгорания'. Именно это сочетание громоздкого парового котла с не менее громоздкой системой преобразования поступательного движения во вращательное движение лишает паровую машину возможности успешно конкурировать с более современными двигателями.

Современные паровые машины имеют к. п. д. около 10%. Снятые сейчас с производства паровозы выпускали в трубу без всякой пользы до 95% сжигаемого ими топлива.

Этот 'рекордно' низкий к. п. д. объясняется неизбежным ухудшением свойств парового котла, предназначенного для установки на паровозе, по сравнению со стационарным паровым котлом.

Почему же паровые машины в течение столь долгого времени имели такое широкое применение на транспорте?

Кроме приверженности к привычным решениям, играло роль и то обстоятельство, что паровая машина имеет очень хорошую тяговую характеристику: ведь чем с большей силой сопротивляется нагрузка перемещению поршня, тем с большей силой давит на него пар, т, е. вращающий момент, развиваемый паровой машиной, возрастает в трудных условиях, что и важно на транспорте. Но, разумеется, отсутствие для паровой машины необходимости в сложной системе переменных передач к ведущим осям ни в коей мере не искупает ее коренного порока - низкого к. п. д.

Этим и объясняется вытеснение паровой машины другими двигателями.

Законы термодинамики

Сохрнение энергии на языке молекул

Законы термодинамики относятся к числу великих законов природы. Таких законов немного. Их можно пересчитать по пальцам одной руки.

Основная цель науки, и в том числе, конечно, физики, состоит в поисках правил, закономерностей, общих законов, великих законов, которым подчиняется природа. Этот поиск начинается с наблюдения или эксперимента. Поэтому мы говорим, что все наши знания носят эмпирический (опытный) характер. За наблюдениями следует поиск обобщений. Путем настойчивого труда, размышлений, вычислений и озарения находятся законы природы. После этого следует третий этап: строгий логический вывод из этих общих законов следствий и частных законов, которые могут быть проверены на опыте. В этом, кстати говоря, и состоит объяснение явления. Объяснить - это значит подвести частное под общее.

Разумеется, мечтой науки является сведение законов к минимальному числу постулатов. Физики неустанно ищут такие возможности, стараются в нескольких строках элегантными формулами выразить всю сумму наших знаний о природе. Примерно тридцать лет Альберт Эйнштейн пытался объединить законы гравитационного и электромагнитного полей. Удастся ли достигнуть этой цели, покажет будущее.

Что же это за законы термодинамики? Краткое определение, как правило, страдает неточностью. Но, пожалуй, ближе всего к сути дела мы окажемся, если скажем, что термодинамика есть учение о правилах, согласно которым тела обмениваются энергией. Однако сведения о законах (или, как их иногда называют, началах) термодинамики позволяют уже строго логическим (математическим) путем найти связи между тепловыми и механическими свойствами тел, разрешают установить ряд важнейших закономерностей, касающихся изменения состояния тел. Так что, пожалуй, наиболее точным определением этой интересующей нас главы физики будет тривиальная фраза: термодинамика - это совокупность знаний, которые следуют из первого и второго начал термодинамики.

Первое начало термодинамики было записано в краткой и выразительной форме еще тогда, когда физики предпочитали не говорить о молекулах. Такого типа формулировки (которые не требуют от нас 'залезать' вовнутрь тела) носят название феноменологических, т. е., в точном переводе, 'относящихся к явлению'. Первое начало термодинамики является некоторым уточнением и расширением закона сохранения энергии.

Мы установили, что тела обладают кинетической и потенциальной энергиями и что в замкнутой системе сумма этих энергий - полная энергия - не может ни исчезать, ни появляться. Энергия сохраняется.

Если не говорить о движении небесных тел, то, пожалуй, можно без преувеличения сказать, что нет таких явлений, в которых механическое движение не сопровождалось бы нагреванием или охлаждением окружающих тел. Когда тело благодаря трению остановилось, его кинетическая энергия на первый взгляд пропала. Однако это лишь на первый взгляд. На самом же деле можно доказать, что сохранение имеет место с абсолютной точностью: механическая энергия тела ушла на нагрев среды. Но что это значит на языке молекул? А вот что: кинетическая энергия тела перешла в кинетическую энергию молекул среды.

Ну хорошо, а что происходит в том случае, если мы в ступке толчем лед? Термометр все время показывает нуль. Казалось бы, механическая энергия исчезла. Куда же она делась в этом случае? И здесь ответ нам ясен: лед превратился в воду. Значит, механическая энергия пошла на разрыв связей между молекулами, изменилась внутренняя энергия молекул. Каждый раз, когда мы замечаем, что механическая энергия тел исчезла, то без труда обнаруживаем, что это нам только кажется, а на самом деле механическая энергия перешла во внутреннюю энергию тел.

В замкнутой системе одни тела могут терять, а другие - приобретать внутреннюю энергию. Но сумма внутренней энергии всех тел, сложенная с механической энергией, остается постоянной для данной системы.

Теперь оставим механическую энергию без внимания. Рассмотрим два момента времени. В первый момент тела покоились, потом происходили какие-то события, а теперь тела снова покоятся. Мы уверены в том, что внутренняя энергия всех тел, входивших в систему, осталась неизменной. Но одни тела потеряли энергию, другие приобрели. Это могло произойти двумя путями. Либо одно тело совершило над другим механическую работу (допустим, сжало его или растянуло), либо одно тело передало другому тепло.

Первое начало термодинамики утверждает: изменение внутренней энергии тела равно сумме сообщенной ему работы и переданного ему тепла.

Тепло и работа являются двумя различными формами, в которых энергия может передаваться от одного тела к другому. Передача тепла происходит беспорядочными ударами молекул. Передача механической энергии состоит в том, что молекулы одного тела стройно, двигаясь 'шеренгами', передают свою энергию другому телу.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату