Рис. 4.12

Диаграммы состояния всех веществ похожи одна на другую. Большие, с житейской точки зрения, различия возникают из-за того, что место нахождения тройной точки на диаграмме может быть у разных веществ самым различным.

Ведь мы существуем вблизи 'нормальных условий', т. е. прежде всего при давлении, близком к одной атмосфере. Как расположена тройная точка вещества по отношению к линии нормального давления - для нас очень существенно.

Если давление в тройной точке меньше атмосферного, то для нас, живущих в 'нормальных' условиях, вещество относится к плавящимся. При повышении температуры оно сначала превращается в жидкость, а потом закипает.

В обратном случае - когда давление в тройной точке выше атмосферного - мы при нагревании не увидим жидкости, твердое вещество будет прямо превращаться в пар. Так ведет себя 'сухой лед', что очень удобно для продавцов мороженого. Брикеты мороженого можно перекладывать кусками 'сухого льда' и не бояться при этом, что мороженое станет мокрым. 'Сухой лед' - это твердый углекислый газ С02. Тройная точка этого вещества лежит при 73 атм. Поэтому при нагревании твердого СО2 точка, изображающая его состояние, движется по горизонтали, пересекающей только лишь кривую испарения твердого тела (так же, как и для обычного льда при давлении около 5 мм рт. ст.).

Мы уже рассказали читателю, каким образом определяется один градус температуры по шкале Кельвина, или, как требует сейчас говорить система СИ,- один кельвин. Однако речь шла о принципе определения температуры. Не все институты метрологии обладают идеальными газовыми термометрами. Поэтому шкалу температуры строят с помощью фиксированных природой точек равновесия между разными состояниями вещества.

Особую роль при этом играет тройная точка воды. Градус Кельвина определяют сейчас как 273,16-ю часть термодинамической температуры тройной точки воды. Тройная точка кислорода принята равной 54,361 К. Температура затвердевания золота положена равной 1337,58 К. Пользуясь этими реперными точками, можно точно отградуировать любой термометр.

Одни и те же атомы, но... разные кристаллы

Черный матовый мягкий графит, которым мы пишем, и блестящий прозрачный, твердый, режущий стекло алмаз построены из одних и тех же атомов углерода. Почему же так различны свойства этих двух одинаковых по составу веществ?

Вспомните решетку слоистого графита, каждый атом которого имеет трех ближайших соседей, и решетку алмаза, атом которого имеет четырех ближайших соседей. На этом примере отчетливо видно, что свойства кристаллов определяются взаимным расположением атомов. Из графита делают огнеупорные тигли, выдерживающие температуру до двух-трех тысяч градусов, а алмаз горит при температуре выше 700°С; плотность алмаза 3,5, а графита - 2,3; графит проводит электрический ток, алмаз - не проводит, и т. д.

Этой особенностью давать разные кристаллы обладает не только углерод. Почти каждый химический элемент, и не только элемент, но и любое химическое вещество, может существовать в нескольких разновидностях. Известно шесть разновидностей льда, девять разновидностей серы, четыре разновидности железа.

Обсуждая диаграмму состояния, мы не говорили о разных типах кристаллов и нарисовали единую область твердого тела. А эта область для очень многих веществ делится на участки, каждый из которых соответствует определенному 'сорту' твердого тела или, как говорят, определенной твердой фазе (определенной кристаллической модификации).

аждая кристаллическая фаза имеет свою область устойчивого состояния, ограниченную определенным интервалом давлений и температур. Законы превращения одной кристаллической разновидности в другую - такие же, как законы плавления и испарения.

Для каждого давления можно указать температуру, при которой оба типа кристаллов будут мирно сосуществовать. Если повысить температуру, кристалл одного вида будет превращаться в кристалл второго вида. Если понизить температуру, то произойдет обратное превращение.

Чтобы при нормальном давлении красная сера превратилась в желтую, нужна температура ниже 110°С. Выше этой температуры, вплоть до точки плавления, устойчив порядок расположения атомов, свойственный красной сере. Температура падает,- колебания атомов уменьшаются, и, начиная со 110°С, природа находит более удобный порядок расположения атомов. Происходит превращение одного кристалла в другой.

Шести разным льдам никто не придумывал названия. Так и говорят: лед один, лед два, ...., лед семь. Как же ceмь, если всего шесть разновидностей? Дело в том, что лед четыре при повторных опытах не обнаружен.

Если сжимать воду при температуре около нуля, то при давлении около 2000 атм образуется лед пять, а при давлении около 6000 атм - лед шесть.

Лед два и лед три устойчивы при температурах ниже нуля градусов.

Лед семь - горячий лед; он возникает при сжатии горячей воды до давлений около 20 000 атм.

Все льды, кроме обычного, тяжелее воды. Лед, получающийся при нормальных условиях, ведет себя, аномально; наоборот, лед, полученный при условиях, отличных от нормы, ведет себя нормально.

Мы говорим, что каждой кристаллической модификации свойственна определенная область существования. Но если так, то каким же образом существуют при одинаковых условиях графит и алмаз?

Такое 'беззаконие' в мире кристаллов встречается очень часто. Умение жить в 'чужих' условиях для кристаллов является почти правилом. Если для перевода пара или жидкости в чужие области существования приходится прибегать к различным ухищрениям, то кристалл, напротив, почти никогда не удается заставить остаться в границах, отведенных ему природой.

Перегревы и переохлаждения кристаллов объясняются трудностью преобразования одного порядка в другой в условиях крайней тесноты. Желтая сера должна при 95,5°С превращаться в красную. При более или менее быстром нагревании мы 'проскочим' эту точку превращения и доведем температуру до точки плавления серы 113°С.

Истинную температуру превращения проще всего обнаружить при соприкосновении кристалликов. Если их тесно наложить один на другой и поддерживать температуру 96°С, то желтый будет съеден красным, а при 95°С желтый поглотит красный. В отличие от перехода 'кристалл - жидкость' превращения 'кристалл - кристалл' задерживаются обычно как при переохлаждении, так и при перегреве.

В некоторых случаях мы имеем дело с такими состояниями вещества, которым бы полагалось жить совсем при других температурах.

Белое олово должно превратиться в серое при падении температуры до +13°С. Мы обычно имеем дело с белым оловом и знаем, что зимой с ним ничего не делается. Оно превосходно выдерживает переохлаждения в 20-30 градусов. Однако в условиях суровой зимы белое олово превращается в серое. Незнание этого факта было одним из обстоятельств, погубивших экспедицию Скотта на Южный полюс (1912 г.). Жидкое топливо, взятое экспедицией, находилось в сосудах, паянных оловом. При больших холодах белое олово превратилось в серый порошок - сосуды распаялись; и топливо вылилось. Недаром появление серых пятен на белом олове называют оловянной чумой.

Так же, как и в случае серы, белое олово может быть превращено в серое при температуре чуть ниже 13°С,; если только на оловянный предмет попадет крошечная крупинка серой разновидности.

Существование нескольких разновидностей одного и того же вещества и задержки в их взаимных превращениях имеют огромное значение для техники.

При комнатной температуре атомы железа образуют кубическую объемно-центрированную решетку, в которой атомы занимают места по вершинам и в центре куба. Каждый атом имеет 8 соседей. При высокой

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату