см3 с такой скоростью, что в каждую секунду уходит миллион молекул. Нетрудно подсчитать, что сосуд полиостью освободится от газа через миллион лет!
Закон Авогадро указывает, что при определенных давлении и температуре отношение числа молекул к объему, в котором они заключены, N/V, есть величина, одинаковая для всех газов.
Так как плотность газа ? = Nm/V, то отношение плотностей газов равно отношению их молекулярных масс:
Относительные массы молекул могут быть поэтому установлены простым взвешиванием газообразных веществ. Такие измерения сыграли в свое время большую роль в развитии химии. Из закона Авогадро следует также, что для моля любого вещества, находящегося в состоянии идеального газа, ?V =
Закон идеального газа записывают часто как
где ? - количество вещества, выраженное в молях. Это уравнение часто используется на практике.
Скорости молекул
Теория указывает, что при одной температуре средние кинетические энергии молекул m
Измерение температуры термометром, заполненным идеальным газом, придает этой мере простой смысл: температура пропорциональна среднему значению энергии поступательного движения молекул. Поскольку мы живем в трехмерном пространстве, про точку, движущуюся как угодно, можно сказать: она имеет три степени свободы. Значит, на одну степень свободы движущейся частицы приходится кТ/2 энергии.
Определим среднюю скорость молекул кислорода при комнатной температуре, которую мы для круглого счета примем в 27°С=300 К. Масса одной молекулы кислорода равна 32/ (6*1023). Простое вычисление даст
Скорость броуновского движения горошины с массой в 0,1 г будет уже всего только 10-6 см/с. Немудрено, что мы не видим броуновского движения таких частиц.
Мы говорим о средних скоростях молекулы. Но ведь не все молекулы движутся с одинаковыми скоростями, какая-то доля молекул движется быстрее, а какая-то медленнее. Все это, оказывается можно рассчитать. Приведем только результаты.
При температуре около 15°С, например, средняя скорость молекул азота равна 500 м/с, со скоростями от 300 до 700 м/с движется 59% молекул. С малыми скоростями - от 0 до 100 м/с - движется всего лишь 0,6% молекул. Быстрых молекул со скоростями свыше 1000 м/с в газе всего лишь 5,4% (см. рис. 3.2).
Основание каждого столбика рисунка построено на интервале скоростей, о котором идет речь, а площадь пропорциональна доле молекул, скорости которых лежат в этом интервале.
Можно рассчитать и распределение молекул по разным значениям энергии поступательного движения-
Число молекул энергия которых более чем в два раза превосходит среднюю, уже меньше 10%. Доля еще более 'энергичных' молекул тает по мере увеличения энергии во все возрастающей степени. Так, молекул, энергия которых в 4 раза больше средней,- всего 0,7%, в 8 раз больше средней - 0,06*10-4%, в 16 раз больше средней - 2*10-8%.
Энергия молекулы кислорода, движущейся со скоростью 11 км/с, равна 23*10-12 эрг. Средняя энергия молекулы при комнатной температуре равна всего 6*10- 14 эрг. Таким образом, энергия 'одиннадцати-километрозой молекулы' по крайней мере в 500 раз больше энергии молекулы со средней скоростью. Неудивительно, что доля молекул со скоростями выше 11 км/с равна невообразимо малому числу - порядка 10-300.
Но почему нас заинтересовала скорость 11 км/с? В книге 1 мы говорили о том, что оторваться от Земли могут лишь тела, имеющие эту скорость. Значит, забравшись на большую высоту, молекулы могут потерять связь с Землей и отправиться в далекое межпланетное путешествие, но для этого надо иметь скорость 11 км/с. Доля таких быстрых молекул, как мы видим, настолько ничтожна, что опасность потери атмосферы Земле не грозит даже через миллиарды лет.
Скорость ухода атмосферы необычайно сильно зависит от гравитационной энергии ? Mm/r. Если средняя кинетическая энергия молекулы во много раз меньше гравитационной энергии, то отрыв молекул практически невозможен. На поверхности Луны гравитационная энергия в 20 раз меньше, что дает для энергии 'убегания' молекулы кислорода значение 1,15*10- 12 эрг. Это значение превышает величину средней кинетической энергии молекулы всего лишь в 20 -25 раз. Доля молекул, способных оторваться от Луны, равна 10-17. Это уже совсем не то, что 10-300, и подсчет показывает, что воздух будет довольно быстро уходить с Луны в межпланетное пространство. Неудивительно, что на Луне нет атмосферы.
Тепловое расширение
Если нагреть тело, то движение атомов (молекул) будет более интенсивным. Они станут расталкивать друг друга и займут больше места. Этим и объясняется хорошо известный факт: при нагревании твердые, жидкие и газообразные тела расширяются.
О тепловом расширении газов долго говорить не приходится: ведь пропорциональность температуры объему газа была положена в основу нашей температурной шкалы.
Из формулы V = V0/273 *Т мы видим, что объем газа при постоянном давлении возрастает при нагревании на 10С на 1/273 часть (т. е. на 0,0037) его объема при 0°С (это положение иногда называют законом Гей-Люссака).
В обычных условиях, т, е. при комнатной температуре и нормальном атмосферном давлении, расширение большинства жидкостей раза в два-три меньше расширения газов.
Мы уже не раз говорили о своеобразии расширения воды. При нагревании от 0 до 4°С объем воды уменьшается с нагреванием. Эта особенность в расширении воды играет колоссальную роль в жизни на Земле. Осенью по мере охлаждения воды верхние остывшие слои становятся плотнее и погружаются на дно. На их место снизу поступает более теплая вода. Но такое перемешивание происходит только до тех