Эффе'кт положе'ния ге'на, влияние расположения генов в хромосоме на. проявление их активности. Явление открыто американским генетиком А. Стёртевантом в 1925. Наблюдается при структурных перестройках хромосом (транслокациях), в результате которых гены активных зон хромосом (эухроматина) могут переноситься в неактивные зоны (гетерохроматин) и инактивироваться и наоборот. При перестройке, возвращающей эухроматиновый ген из гетерохроматина в любую точку зухроматина, функционирование данного гена восстанавливается. Свойство обратимости при Э. п. г. используют для доказательства того, что наблюдаемое изменение проявления данного гена — Э. п. г., а не его мутация . В результате исчезают пуфы в эухроматиновых участках, нарушаются синтезы ДНК и РНК: гетерохроматин при перенесении в эухроматин активируется и становится цитологически не отличим от эухроматина. Нарушение активности при Э. п. г. может наблюдаться одновременно у нескольких эухроматиновых генов, расположенных за геном, непосредственно прилегающим к гетерохроматину, причём влияние гетерохроматина всегда направлено от места перестройки к ближайшему эухроматиновому гену и по мере увеличения расстояния между эухроматиновыми и гетерохроматиновыми генами это влияние ослабляется (эффект поляризованного распространения). Наиболее изучен т. н. мозаичный Э. п. г., фенотипически проявляющийся в мозаичности, т. е. в появлении измененных соматических клеток на фоне нормальных.
Молекулярный механизм Э. п. г. не ясен. Предполагают, что в основе его лежит изменение морфологии транслоцированного участка хромосомы. Изучение Э. п. г. перспективно для выяснения механизмов генной регуляции у эукариотов.
В. Вельхов.
Эффекти'вная ма'сса, величина, имеющая размерность массы, характеризующая динамические свойства квазичастиц . Например , движение электрона проводимости в кристалле под действием внешней силы F и сил со стороны кристаллической решётки (см. Твёрдое тело , Зонная теория ) может быть описано как движение свободного электрона, на который действует только сила F (закон Ньютона), но с Э. м. m* , отличной от массы m свободного электрона. Это отличие отражает взаимодействие электрона проводимости с решёткой. Э. м. определяется соотношением:
, (1)
где x — энергия, р — квазиимпульс электрона проводимости. Если зависимость x(р ) (закон дисперсии) анизотропна, то Э. м. представляет собой тензор (тензор обратной массы):
(2)
Это означает, что ускорение электрона в решётке в общем случае направлено не параллельно внешней силе F . Оно может быть направлено даже антипараллельно F , что соответствует отрицательному значению Э. м. Свойства электронов с отрицательной Э. м. столь отличаются от свойств обычных частиц, что оказалось удобнее рассматривать положительно заряженные дырки с положительной Э. м.
При изучении гальваномагнитных явлений пользуются так называемой циклотронной Э. м. электронов и дырок
, (3)
где S — площадь сечения изоэнергетической поверхности x(р) плоскостью, перпендикулярной магнитному полю Н . Наиболее важные методы определения Э. м. электронов проводимости и дырок — циклотронный резонанс , измерение электронной теплоёмкости и др.
В теории квантовой жидкости для квазичастиц — фермионов с изотропным законом дисперсии Э. м. называется отношение:
m* = p0 /v0 (4)
где р0 и vo — абсолютные значения импульса и скорости квазичастиц при абсолютном нуле температуры, соответствующие Ферми энергии . Э. м. атома жидкого 3 He: m * = 3,08 m0 , где m0