нейтральной (не имеющей электрического заряда) элементарной частицы, входящей наряду с прогоном (электрически заряженным) в состав атомного ядра.
В 1932 году это блестящее предвидение было экспериментально подтверждено английским физиком Дж. Чедвиком, открывшим нейтрон.
В 1938 году два немецких ученых Отто Ган и Фридрих Штрассман открыли новое явление — деление ядер атомов урана и тория. Они обнаружили, что атомы урана-235 можно 'расколоть' на две примерно одинаковые части, бомбардируя их нейтронами, движущимися со скоростью порядка 400 метров в секунду. При этом получался удивительный результат. Суммарная масса осколков оказывалась несколько меньше массы целого ядра.
Зато разрушение его сопровождалось выделением энергии. И еще они обнаружили, что каждый акт деления ядра сопровождался испусканием в среднем более двух нейтронов взамен одного поглощенного. При некоторых условиях эти нейтроны вызывают деление двух ядер, ускоряя процесс распада, в результате которого освобождается гигантская энергия. Этот лавинообразный процесс получил название 'цепная реакция'. Так были созданы научные предпосылки к использованию атомной энергии.
Спустя всего лишь семь лет после открытия О. Гана и Ф. Штрассмана пережили трагедию японские города Хиросима и Нагасаки, на которые американские летчики сбросили две первые атомные бомбы. А спустя еще десять лет в Советском Союзе вступила в строй первая в мире атомная электростанция, затем первый в мире атомный ледокол…
И примерно тогда же созданная в США государственная комиссия по атомной энергии сообщила, что, по ее подсчетам, к концу XX века половину электрической энергии будут поставлять атомные реакторы, а через сто лет ими будет производиться почти вся электроэнергия, которой тогда понадобится во много раз больше, чем сейчас.
Мы напомнили несколько имен, которые уже внесены во все энциклопедии мира, и несколько событий, ставших важными вехами в истории научно-технического прогресса человечества. Теперь читатель может сам оценить масштабы той 'цепной реакции', которой ответили наука и техника на первые открытия, первые изобретения, первые опыты в этой области.
Естественно поставить вопрос, насколько закономерна такая бурная реакция? Почему то, что 70-50- 30-10 лет назад интересовало только небольшую группу ученых, с течением времени становится центром внимания миллионов людей? И не просто внимания, а центром приложения их творческих сил и способностей? Становится предметом заботы специальных ведомств, министерств, правительств, готовых нести гигантские затраты, заметные даже в бюджете целого государства?
Больше четырех пятых мирового потребления энергии дают уголь, нефть, газ, торф. Их запасы из года в год сокращаются. Уже сегодня видно, что может наступить время, когда при всевозрастающей потребности в энергии из земных недр придется, фигурально выражаясь, вычерпывать ложкой остатки нефти и вырубать последний кусок угля. Уже сегодня все громче, злободневней и понятней становятся разговоры о назревающем 'энергетическом кризисе'. Конечно, каждый человек по отдельности может об этом не думать, успокаивая себя соображениями: 'На мой век энергии хватит'.
Но человечество в целом об этом думать обязано, обязано заранее найти пути и способы его предотвращения.
Конечно, супруги Кюри, делая свои открытия, совершенно не думали ни о каком 'энергетическом кризисе'.
Про Э. Резерфорда говорят, что в 1937 году, то есть за год до опубликования работ О. Гана и Ф. Штрассмана, на вопрос о том, когда его открытие найдет практическое применение, он ответил: 'Никогда'. Важно не это.
Важно, что их открытия и исследования, работа сотен и тысяч других ученых и исследователей, десятков и сотен тысяч рабочих и инженеров, одним словом, работа миллионов людей в конечном счете решает жизненно важные государственные, общечеловеческие проблемы.
В этом и только в этом случае возникает 'цепная реакция', развивающаяся такими темпами и достигающая таких масштабов, которые нам порой трудно себе представить.
Ну хорошо, может сказать читатель, понятно, насколько жизненно важно решить энергетическую проблему. Но ведь страницей раньше было сказано, что, проникнув в атом, человек оказался буквально у бездонного океана энергии. Казалось бы, черпай из этого океана сколько нужно, и все тут!
Для того чтобы добывать нефть, уголь и газ, нужны миллионы людей. Это и шахтеры, врубающиеся в лаву непосредственно в забое, и инженеры, проектирующие угольные комбайны, и нефтяники, работающие на бурильных установках, и геологи, разведывающие новые месторождения, и ученые, разрабатывающие способы транспортировки газа и нефти на тысячекилометровые расстояния, и строители нефте- и газопроводов…
Так надо ли удивляться, что для того, чтобы добывать атомную энергию в таких количествах, которые бы вносили существенный вклад в проблему предупреждения кризиса, тоже нужны миллионы людей, специалисты многих специальностей, уже привычных и совершенно новых. И нужна техника — уже привычная и новая, новейшая, сверхновейшая! Только тогда наука может стать реальной производительной силой, когда она шагает рука об руку с техникой. И чем более глубокие научные открытия приходят на службу человеку, чем более тонкие и сложные технологические процессы сопряжены с их использованием, тем все более сложные задачи возникают перед техникой, тем все более 'квалифицированными' и разнообразными должны становиться установки, машины, приборы и автоматы, выполняющие эти процессы. Вот почему в наши дни, говоря о научно-техническом прогрессе, подчеркивают, что наука и техника сегодня неотделимы одна от другой, как неразделим тот вклад, который они несут в решение жизненно важных проблем, стоящих перед человечеством.
Начало робототехники
Вы, наверное, догадываетесь, что мы не случайно начали книжку о робототехнике с рассказа об атомной энергетике. И действительно, здесь никакой случайности нет!
Да, атомная энергетика уже стала одним из столпов технического прогресса, энергетической базой нашего ближайшего будущего. Но материалы, с которыми приходится иметь дело в этой области техники, обладают радиоактивностью — свойством, угрожающим здоровью и самой жизни человека, ужасным свойством, породившим трагедию Хиросимы. От лучевой болезни нет прививок и нет способов 'закаливания' организма, предупреждающих заболевание при интенсивном облучении.
Опасны для человека не только сами радиоактивные вещества, но и оборудование, машины, инструменты, которые используются при их получении и обработке. Они сами под воздействием облучения становятся 'заразными'. А вместе с тем работы с радиоактивными веществами, процессы и технологии, связанные с научными исследованиями и производством ядерного горючего, ремонтом, монтажом и демонтажем реакторов, обслуживанием машин, приборов, устройств и систем ядерной энергетики, всего того оборудования, которое эксплуатируется в радиоактивных зонах, требуют непрерывного участия людей. О том, какого размаха уже достигли эти работы, процессы, технологии и каких масштабов они неизбежно достигнут в ближайшем будущем, только что говорилось.
Так возникло противоречие между потребностями человека, которые может удовлетворить только атомная промышленность, и опасностью для его здоровья и жизни, которую она несет. Оно возникло не сегодня и не вчера, а еще в ту пору, когда не было речи об атомной энергетике, когда велись первые опыты по изучению радиоактивности, когда первые ученые и исследователи 'открыли' лучевую болезнь, на своем личном горьком опыте познали ее тяжелые последствия. И еще в ту пору стало ясно — профилактика этой болезни состоит в том, чтобы защитить человека от вредной радиации.
Значит, указанное противоречие можно было разрешить единственным способом: надо было отделить зону, где находится материал и оборудование, несущие смертельную угрозу, от зоны, где находятся люди. Но как же тогда производить манипуляции с этими материалами, манипуляции, с