Ф. относится к фазовой Ф.
Ещё одна новая область Ф. – фотолитография , возникшая в связи с развитием микроэлектроники . Здесь используются не только несеребряные СЧС – фоторезисты , но и AgHal-CЧС высокого разрешения, с помощью которых изготовляют фотошаблоны (через фотошаблоны затем экспонируют фоторезисты). В последней трети 20 в. и в этой области началась постепенная замена AgHal-CЧС высокоразрешающими несеребряными СЧС: предложены СЧС на основе солей палладия, подвергаемые физическому проявлению с отложением неблагородных металлов (меди, никеля), разработаны СЧС на основе напылённых слоев галогенидов свинца и таллия, окислов молибдена и др.
Быстрое развитие ИК-техники, в том числе появление разнообразных ИК-излучающих лазеров , поставило вопрос о расширении границ Ф. в длинноволновую сторону. Поскольку для AgHal-CЧС это исключено, то применения Ф. в этой области базируются исключительно на несеребряных СЧС и процессах. Один из методов Ф. в ИК-области спектра – эвапорография , в которой в качестве СЧС используют тонкие покрытия летучих веществ на ИК-поглощающих зачернённых подложках. Практически реализованы также такие СЧС, как слои холестерических жидкокристаллических (см. Жидкие кристаллы ) веществ и ферромагнитные плёнки с полосовой доменной структурой (см. Магнитная тонкая плёнка ). Большими возможностями, ещё не полностью реализованными, располагает полупроводниковая Ф. на основе ИК-чувствительных узкозонных полупроводников, материалов с электронно-дырочными переходами и полупроводниковыми гетеропереходами . Для исключения действия рассеянного теплового излучения окружающих тел в таких фотоматериалах «выключают» чувствительность до начала и после окончания экспонирования: возникновение какой-либо записи вне этого временного интервала невозможно потому, что любая запись фотографической информации на этих материалах требует замкнутой электрической или электрохимической цепи, а замыкание цепи либо происходит с участием фотогенерированных носителей тока в полупроводниковом СЧС, либо осуществляется в необходимый момент человеком, производящим запись, синхронно с началом экспонирования (как и последующее размыкание цепи – синхронно с окончанием экспонирования).
Как метод записи оптической информации в двоичном коде (сигналы «да» и «нет») Ф. получила применение в устройствах оптической памяти ЭВМ. Здесь AgHal-CЧС не являются оптимальными ни для долговременной, ни особенно для оперативной памяти: их недостатки – ограниченная информационная ёмкость (плотность записи на единицу площади СЧС), медленность процесса обработки, задерживающая доступ к информации, невозможность стирания записанной информации после полной её обработки и повторного использования СЧС. Поэтому в устройствах памяти ЭВМ начали применяться фотохромные СЧС, при экспонировании обратимо изменяющие спектральную область поглощения, т. е. фотохимически окрашивающиеся. В качестве таких СЧС наиболее употребительны слои органических красителей класса спиропиранов, но началось использование и неорганических фотохромных СЧС из числа щёлочногалоидных солей (KCl и др.). Благодаря бесструктурности эти СЧС обладают чрезвычайно большой разрешающей способностью и, как следствие, большой информационной ёмкостью; малая длительность процесса фотохимического окрашивания обеспечивает требуемое быстродействие, а обратимость окрашивания позволяет путём термического или оптического воздействия стирать запись с достаточной скоростью и использовать после этого СЧС повторно.
Приведённые данные не исчерпывают ни имеющихся видов несеребряных СЧС и процессов на них, ни их применений, хотя дают некоторую общую картину того, как далеко отошла Ф. от своих первоначальных форм. Несмотря на столь быстрый рост числа видов и применений несеребряной Ф., научно-технической Ф. на основе AgHal-CЧС полностью сохраняет своё значение, а области её применения также непрерывно расширяются. Примерами таких областей служат исследования высокотемпературной плазмы , изучение движения тел со сверхзвуковыми скоростями в аэродинамике и баллистике , исследования ударных волн (в частности, при взрыве и детонации ), исследования планет (их поверхности, атмосферы, излучений) наземными приборами и с космических летательных аппаратов , исследования ядерных излучений и ядерных реакций , изучение технологических процессов и работы механизмов в химическом и механическом оборудовании и т.д. В большинстве случаев в этих исследованиях применяется динамическая Ф.: либо как получение серии последовательных изображений объекта, обычно через очень малые промежутки времени (вплоть до 10-9 сек ), либо в виде непрерывной записи изображения, получаемой с помощью развёртки оптической , в которой изменения почернения по длине плёнки содержат информацию о развитии процесса во времени. Значительное распространение получила и статическая Ф., в частности при исследовании биологических и геологических объектов; применительно к биологическим объектам используется также динамическая Ф., прежде всего в форме цейтраферной киносъёмки медленно протекающих изменений. В связи с задачами внеземного исследования астрофизических процессов резко расширилось применение Ф. для съёмки в далёкой УФ-области спектра, вплоть до границы с мягким рентгеновским излучением; поэтому потребовалось создание специальных СЧС, содержащих AgHal в качестве чувствительного элемента, но почти или полностью не содержащих желатины, поскольку она в этой части спектра целиком задерживает излучение. Полностью сохранила своё значение Ф. в таких