(В ) деталей объекта съёмки. Это соотношение передаётся в виде соотношения оптических плотностей (D ) почернения фотографического в изображении. В окончательном позитивном изображении (отпечатке, диапозитиве ) при идеальном Ф. т. соотношение D для любой пары деталей объекта должно быть таким, чтобы отношение их яркостей в объекте и в изображении при одинаковых условиях рассматривания было одинаковым. Такое Ф. т. осуществимо лишь при условии, что вся последовательность преобразований набора яркостей в набор освещённостей на негативном фотослое и далее в почернения негатива, освещённости на позитивном фотослое, почернения позитива и т.д. (например, в набор почернений копии, набор освещённостей на просмотровом экране) будет линейной, а диапазон, в котором эти линейные преобразования осуществляются, – неограниченным. Однако фактически все стадии фотографического процесса в большей или меньшей степени нелинейны и ограничены по диапазону: так, характеристическая кривая фотослоя всегда нелинейна, а его фотографическая широта ограничена и невелика даже в сравнении с полным интервалом передаваемых экспозиций . Ф. т. ещё более усложняется, если оценка изображения проводится не с помощью объективно измеряемых характеристик, а визуально: в этом случае в число искажающих факторов дополнительно входят особенности глаза как приёмника, в том числе неодинаковая оценка им одного и того же набора значений В при разных размерах деталей, различных уровнях освещённости изображения и объекта, неодинаковом затемнении помещения для просмотра и т.д. Поэтому основными задачами теории Ф. т. вместо установления условий идеального Ф. т. постепенно по необходимости стали подбор условий, при которых Ф. т. ещё удовлетворительно для возможно большего интервала значений В, анализ того, как фотографически воспроизвести данный объект с наименьшей степенью искажения соотношений В, а также установление количественных оценок этой степени.
А. Л. Картужанский.
Фотогра'фия (от фото... и ...графия ), совокупность методов получения стабильных во времени изображений предметов и оптических сигналов на светочувствительных слоях (СЧС) путём закрепления фотохимических или фотофизических изменений, возникающих в СЧС под действием излучения, испускаемого или отражаемого объектом Ф.
Общая последовательность действий в Ф. не зависит от выбора СЧС и процесса получения стабильного изображения на нём и включает следующие стадии: создание на поверхности СЧС распределения освещённостей, соответствующего изображению или сигналу; появление в СЧС вызванных действием излучения химических или физических изменений, различных по величине в разных участках СЧС и однозначно определяемых экспозицией , подействовавшей на каждый участок; усиление произошедших изменений, если они слишком малы для непосредственного восприятия глазом или прибором; стабилизация непосредственно возникших или усиленных изменений, которая позволяет длительно сохранять полученные изображения или записи сигналов для последующего рассматривания или анализа; извлечение информации из полученного изображения – рассматривание, считывание, измерение и т.д. Эта общая схема может быть дополнена (например, такой стадией, как размножение изображений), отдельные из перечисленных стадий могут быть разделены на более дробные или совмещены, но в целом схема сохраняется во всех процессах Ф.
Первоначально Ф. создавалась как способ фиксации портретных или натурных изображений за периоды времени, много меньшие, чем требуются для той же цели художнику. Однако по мере расширения возможностей Ф. стал увеличиваться и круг решаемых ею задач, чему особенно способствовало появление кинематографии и цветной фотографии , соответственно возрастали роль и значение Ф. в жизни человечества. В 20 в. Ф. стала одним из важнейших средств информации и документирования (фиксация лиц, событий и т.п.), технической основой самого массового вида искусства – киноискусства , входит в число основных технических средств полиграфии , служит орудием исследования во многих отраслях науки и техники. Это разнообразие задач, решаемых с помощью Ф., позволяет считать её одновременно разделом науки, техники и искусства.
Независимо от области применения Ф. можно подразделить на более частные виды по многим признакам, например: по временному характеру изображения – на статическую и динамическую (наиболее важным примером которой служит кинематография); по химическому составу СЧС – на серебряную (более строго – галогенидо-серебряную) и несеребряную; по способности передавать только яркостные или также и цветовые различия в объекте – на черно-белую и цветную; в зависимости от того, передаются ли изменения яркостей в объекте различиями поглощения света в изображении или различиями оптической длины пути света в нём – на амплитудную и фазовую; по пространственному характеру изображений – на плоскостную и объёмную. Последнее разделение, впрочем, требует оговорки: любое фотографическое изображение само по себе является плоским, а его объёмность (в частности, в стереоскопической Ф.) достигается одновременной съёмкой объекта с двух близких точек и последующим рассматриванием сразу двух снимков (при этом каждого из них только одним глазом). Совершенно особым видом объёмной Ф. можно считать голографию , но в ней способ записи оптической информации об объекте и его пространственных свойствах принципиально иной, чем в «обычной» Ф., и похож на Ф. только использованием СЧС для записи информации.
Исторический очерк. История Ф. начинается с опытов, в которых на бумагу или холст с помощью