совместно.

  Вопросы регулирования движения машинного агрегата и управления им рассматриваются в теории регулирования. Различают неустановившийся, переходный и установившийся режимы движения. При установившемся режиме скорости точек механизма являются периодическими функциями времени или положения или остаются постоянными. Регулирование установившегося движения сводится к обеспечению угловой скорости звена приведения, не превышающей допустимого отклонения от её значения. Для этого рассчитывают и устанавливают на машину специальную массу — маховик. Необходимость регулирования неустановившегося движения возникает в том случае, когда, несмотря на непериодическое изменение внешних сил или масс, в механизме требуется поддерживать среднюю скорость звена приведения постоянной. Для этого на машину устанавливают специальные автоматические регуляторы. Основной задачей при этом является определение устойчивости движения системы машина — регулятор. Если же скорость какого-либо звена (или др. параметра) нужно изменять по заданному закону (программе), то в машину встраивают программное устройство. Примером может служить программное управление металлорежущими станками. Конкретная задача, рассматриваемая теорией регулирования, — отыскание оптимальных режимов движения машин (оптимальное управление). Например, определение движения с наибыстрейшим переходным режимом при ограниченном ускорении, т. е. оптимального по быстродействию, или движения с минимумом затрачиваемой в переходном режиме энергии, т. е. оптимального по потерям.

  Нахождение непроизводительных потерь в машинах сводится к определению потерь на трение, которые являются основными и влияют на эффективность работы машин и механизмов. Степень использования энергии в машине оценивается механическим кпд.

  Кинетостатический расчёт механизмов, выполняемый при известном законе движения механизма, производится определением реакций в кинематических парах от всех заданных внешних сил, а также сил инерции звеньев и сил трения в кинематических парах. Значения этих реакций входят в расчёты звеньев на прочность и необходимы для подбора подшипников и расчёта их смазки.

  Уравновешивание машин и механизмов осуществляется рациональным подбором и размещением противовесов, снижающих динамические давления в кинематических парах механизмов. На практике осуществляют уравновешиванием машины на фундаменте (предотвращение вибраций) или уравновешиванием вращающихся масс — балансировкой. Инерционные силы в современных быстроходных машинах достигают больших значений. Переменные по величине и направлению силы инерции нарушают нормальную работу узлов машины, являются источником вибраций и шума, которые вредно воздействуют на обслуживающий персонал и нарушают нормальную работу др. механизмов и приборов. В вибрационных машинах рассчитывают условия создания интенсивных колебаний их исполнительных органов. Динамические исследования в машинах непосредственно связаны с расчётами на прочность и жёсткость элементов машин, которые проводятся с целью выбора размеров и конструктивных форм деталей. Методы таких расчётов обычно излагаются в учебных дисциплинах: сопротивление материалов, динамика сооружений, детали машин.

  Динамические исследования проводят также для пространственных механизмов со многими степенями свободы. Системы подобного типа обладают большой универсальностью выполняемых операций.

  См. также Машин и механизмов теория, Динамика сооружений, Кинетостатика механизмов, Сопротивление материалов, Пространственный механизм.

  Лит.: Кожешник Я., Динамика машин, пер. с чешск., М., 1961; Зиновьев В. А., Бессонов А. П., Основы динамики машинных агрегатов, М., 1964; Артоболевский И. И., Теория механизмов, 2 изд., М., 1967; Кожевников С. Н., Теория механизмов и машин, 3 изд., М., 1969.

  И. И. Артоболевский, А. П. Бессонов.

Действие сил и моментов кривошипно-ползунного механизма (а) в звене приведения (б) и в точке приведения (в): 1 — кривошип; 2 — шатун: 3 — ползун; М — приведённый момент МП; А — неподвижная опора.

Динамика (механич.)

Дина'мика (от греч. dynamikós — сильный, от dýnamis — сила), раздел механики, посвящённый изучению движения материальных тел под действием приложенных к ним сил. В основе Д. лежат три закона И. Ньютона (см. Ньютона законы механики), из которых как следствия получаются все уравнения и теоремы, необходимые для решения задач Д.

  Согласно первому закону (закону инерции) материальная точка, на которую не действуют силы, находится в состоянии покоя или равномерного прямолинейного движения; изменить это состояние может только действие силы. Второй закон, являющийся основным законом Д., устанавливает, что при действии силы F материальная точка (или поступательно движущееся тело) с массой m получает ускорение w, определяемое равенством

  mw = F.          (1)

Третьим законом является закон о равенстве действия и противодействия (см. Действия и противодействия закон). Когда к телу приложено несколько сил, F в уравнении (1) означает их равнодействующую. Этот результат следует из закона независимости действия сил, согласно которому при действии на тело нескольких сил каждая из них сообщает телу такое же ускорение, какое она сообщила бы, если бы действовала одна.

  В Д. рассматриваются два типа задач, решения которых для материальной точки (или поступательно движущегося тела) находятся с помощью уравнения (1). Задачи первого типа состоят в том, чтобы, зная движение тела, определить действующие на него силы. Классическим примером решения такой задачи является открытие Ньютоном закона всемирного тяготения: зная установленные И. Кеплером на основании обработки результатов наблюдений законы движения планет (см. Кеплера законы), Ньютон показал, что это движение происходит под действием силы, обратно пропорциональной квадрату расстояния между планетой и Солнцем. В технике такие задачи возникают при определении сил, с которыми движущиеся тела действуют на связи, т. е. др. тела, ограничивающие их движение (см. Связи механические), например при определении сил давления колёс на рельсы, а также при нахождении внутренних усилий в различных деталях машин и механизмов, когда законы движения этих машин (механизмов) известны.

  Задачи второго типа, являющиеся в Д. основными, состоят в том, чтобы, зная действующие на тело силы, определить закон его движения. При решении этих задач необходимо ещё знать так называемые начальные условия, т. е. положение и скорость тела в момент начала его движения под действием заданных сил. Примеры таких задач: зная величину и направление скорости снаряда в момент его вылета из канала ствола (начальная скорость) и действующие на снаряд при его движении силу тяжести и силу сопротивления воздуха, найти закон движения снаряда, в частности его траекторию, горизонтальную дальность полёта, время движения до цели и др.; зная скорость автомобиля в момент начала торможения и силу торможения, найти время движения и путь до остановки; зная силу упругости рессор и вес кузова вагона, определить закон его колебаний, в частности частоту этих колебаний, и многие др.

  Задачи Д. для твёрдого тела (при его непоступательном движении) и различных механических систем решаются с помощью уравнений, которые также получаются как следствия второго закона Д., применяемого к отдельным частицам системы или тела; при этом ещё учитывается равенство сил взаимодействия между этими частицами (третий закон Д.). В частности, таким путём для твёрдого тела, вращающегося вокруг неподвижной оси z, получается уравнение:

  lze = Mz,

где Izмомент инерции тела относительно оси вращения, e — угловое ускорение тела, Mzвращающий момент, равный сумме моментов действующих сил относительно оси вращения. Это уравнение позволяет, зная закон вращения, т. е. зависимость e от времени, найти вращающий момент (задача первого типа) или, зная вращающий момент и начальные условия, т. е. начальное положение тела и начальную угловую скорость, найти закон вращения (задача второго типа).

  При изучении

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату