прочно утвердились; вероятность того, что их когда-нибудь в результате новых открытий сменят другие законы и факты, чрезвычайно мала... В будущем нам следует ожидать новых открытий лишь в шестом знаке после запятой».

Его замечания прозвучали буквально накануне величайших потрясений в истории науки — квантовой революции 1900 г. и открытия теории относительности в 1905 г. Дело в том, что события, которые мы сегодня считаем невозможными, нарушают известные нам законы физики — но ведь законы эти могут меняться.

В 1825 г. великий французский философ Огюст Конт в своем «Курсе философии» заявил, что наука никогда не сможет определить, из чего сделаны звезды. В то время это утверждение выглядело вполне резонным, ведь о природе звезд ничего не было известно. Ясно было, что находятся они очень далеко и добраться до них невозможно. Но всего через несколько лет после заявления Конта физики узнали (при помощи спектроскопии), что Солнце состоит из водорода. Более того, сегодня мы знаем, что путем анализа спектральных линий звезд, излучавших свет миллиарды лет назад, можно определить химический состав большей части Вселенной.

Конт бросил вызов научному миру, перечислив еще несколько «невозможных событий».

• Он утверждал, что «глубинная структура тел навсегда останется за пределами наших знаний». Другими словами, невозможно познать истинную природу материи.

• Он считал, что математика неприложима к биологии и химии. Он утверждал, что эти науки невозможно низвести до уровня математики.

• Он считал, что изучение небесных тел не может принести человечеству реальной пользы.

В XIX в. у философа были все основания для подобных заявлений, ведь фундаментальная наука тогда только зарождалась и мало что знала. Почти ничего не было известно о тайнах вещества и жизни. Но сегодня у нас есть атомная теория, открывшая новые просторы для научных исследований и изучения структуры вещества. Мы знаем о ДНК и квантовой теории, раскрывшей нам тайны жизни и химии. Мы знаем также о прилетающих из космоса метеоритах, которые не только оказали влияние на развитие жизни на Земле, но и, возможно, участвовали в ее зарождении.

Астроном Джон Барроу заметил: «Историки до сих пор обсуждают, не стали ли взгляды Конта одной из причин последовавшего вскоре упадка французской науки».

Математик Давид Гильберт, отвергая утверждения Конта, писал: «По-моему, подлинная причина того, что Конту не удалось найти ни одной действительно нерешаемои проблемы, заключается в том, что нерешаемых проблем не существует».

Но сегодня некоторые ученые пытаются составить новый список невозможных событий: мы никогда не узнаем, что происходило до Большого взрыва (или, скажем, что послужило его причиной); мы никогда не получим «теорию всего».

Физик Джон Уилер написал по поводу первого «невозможного» вопроса: «Двести лет назад можно было спросить у любого человека: 'Сможем ли мы понять когда-нибудь, как возникла жизнь?' — и услышать в ответ: 'Абсурд! Это невозможно!' Я примерно так же отношусь к вопросу 'Поймем ли мы когда-нибудь, как возникла Вселенная?'».

Астроном Джон Барроу добавил: «Скорость света ограниченна, поэтому ограниченны и наши знания о структуре Вселенной. Мы не можем определить, конечна она или бесконечна, было ли у нее начало и будет ли конец, одинакова ли повсюду ее структура и вообще, в конце концов, упорядочение Вселенная или нет... На все принципиальные вопросы о природе Вселенной — от начала ее и до конца — оказывается, невозможно ответить»,

Барроу прав в том, что мы никогда не узнаем с абсолютной точностью подлинную природу Вселенной во всем ее великолепии. Но мы вполне способны отщипывать по кусочку от этих вечных неисчерпаемых вопросов и постепенно приближаться к истине. Утверждения о невозможности чего бы то ни было следует, вероятно, рассматривать не как абсолютные пределы нашего знания, а как вызов следующему поколению ученых. Эти пределы, подобно корочке пирога, возникают, чтобы быть разрушенными.

Эпоха до Большого взрыва

Что касается Большого взрыва, то в настоящий момент создается новое поколение приборов, которые, возможно, помогут нам разрешить некоторые вечные вопросы. Сегодня наши космические детекторы излучения регистрируют только микроволновое излучение, возникшее через 300 000 лет после Большого взрыва, когда сформировались первые атомы. Это излучение не в состоянии помочь нам разобраться в том, что было до этого, потому что излучение первоначального огненного шара было слишком горячим и случайным, чтобы из него можно было извлечь какую-нибудь полезную информацию.

Но не исключено, что при помощи анализа других типов излучения мы сможем подобраться к Большому взрыву чуть ближе. К примеру, массу интересной информации обещает нам изучение нейтрино. Нейтрино настолько неуловимы, что могут пролететь сквозь свинцовый шар размером с Солнечную систему, поэтому нейтринное излучение может рассказать нам о том, что происходило через несколько секунд после Большого взрыва.

Окончательно же разобраться в тайнах Большого взрыва нам, возможно, помогут «гравитационные волны» — волны, бегущие по ткани пространства-времени. Физик Роки Колб из Чикагского университета говорит: «Определив свойства нейтринного фона, мы сможем заглянуть в момент через одну секунду после Большого взрыва. Но гравитационные волны из зоны инфляции возникли во Вселенной через 10~35 секунд после взрыва».

Первым предсказал гравитационные волны Эйнштейн в 1916 г.; возможно, со временем они станут важнейшим инструментом астрономии. Обращаясь к истории, можно сказать, что с обузданием каждой новой формы излучения в астрономии начиналась новая эра. Сначала был только видимый свет, при помощи которого Галилей изучал Солнечную систему. Затем к нему добавились радиоволны, которые со временем позволили человеку заглянуть в центры галактик и обнаружить там черные дыры. Не исключено, что детекторы гравитационных волн раскроют для нас — ни много ни мало — тайны творения.

В некотором смысле гравитационные волны просто обязаны существовать. Чтобы убедиться в этом, рассмотрим старый как мир вопрос: что произойдет, если внезапно исчезнет Солнце? По Ньютону, мы почувствуем это немедленно. Земля мгновенно будет вышвырнута с орбиты и ввергнута во тьму. Дело в том, что закон всемирного тяготения Ньютона не принимает в расчет скорость взаимодействия, поэтому силы гравитации действуют мгновенно во всей Вселенной. Но, согласно Эйнштейну, ничто не может двигаться быстрее света, и информация об исчезновении Солнца достигнет Земли только через восемь минут. Другими словами, сферическая «ударная волна» гравитации выйдет из Солнца и лишь через некоторое время ударит по Земле. Вне сферической границы этой гравитационной волны будет казаться, что Солнце по-прежнему светит и находится на месте — ведь информация о его исчезновении еще не достигла Земли. Однако внутри сферы гравитационной волны Солнца уже не будет, потому что волна эта распространяется со скоростью света.

Еще один способ убедиться в том, что гравитационные волны должны существовать, — это представить себе очень большую простыню. Согласно Эйнштейну, пространство-время — это ткань, которую можно сворачивать или растягивать подобно простыне. Если схватить простыню за край и быстро потрясти, мы увидим, что по полотну побегут волны, или рябь, — причем побегут с определенной скоростью. Точно так же гравитационные волны можно уподобить ряби, бегущей по ткани пространства- времени.

Гравитационные волны принадлежат к самым стремительно развивающимся темам современной физики. В 2003 г. были введены в строй первые крупномасштабные детекторы гравитационных волн, получившие название LIGO (Laser Interferometer Gravitational Wave Observatory); эти детекторы имеют 4 км в длину и расположены в Хэнфорде, штат Вашингтон, и в Ливингстон-Пэриш, штат Луизиана. Ученые надеются, что детекторы LIGO, обошедшиеся нам в 365 млн долл., смогут зарегистрировать излучение от сталкивающихся нейтронных звезд и черных дыр.

Следующее крупное событие, вероятно, произойдет в 2015 г., когда начнется запуск спутников нового поколения, предназначенных для анализа гравитационного излучения в космосе с самого момента творения. Это совместный проект NASA и Европейского космического агентства; на околосолнечную орбиту предполагается запустить три спутника, которые вместе составят систему с красивым именем LISA (Laser

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату