в третьей он женится на ЛоисЛейн и у них рождаются супердети. Но можно ли считать параллельные миры исключительно вотчиной сериала «Сумеречная зона», или для них есть в современной физике серьезные предпосылки?
На протяжении всей истории человечества, включая практически все древние общества, люди верили, что существуют иные сферы, где обитают боги и духи. Церковь верит в существование рая, ада и чистилища. У буддистов есть нирвана и разные плоскости сознания. У индуистов — тысячи миров.
Христианские теологи, не в силах объяснить, где же могут находиться небеса, нередко рассуждают о том, что Бог, возможно, живет где-то в других, высших измерениях. Как ни странно, если бы высшие измерения действительно существовали, многие качества, которые мы приписываем богам, могли бы стать реальностью. Существо в высшем измерении обретало бы способность появляться и исчезать в любом месте по собственному желанию, а также проходить сквозь стены — способности, которыми в представлении человека обычно обладают божества.
В последнее время концепция параллельных вселенных является одной из самых горячо обсуждаемых тем в теоретической физике. Вообще, можно говорить о нескольких типах параллельных вселенных, которые заставляют нас заново пересмотреть наши представления о «реальности». Причем ставкой в теоретическом споре о различных параллельных вселенных служит — ни много ни мало — природа самой реальности.
В научной литературе активно обсуждается по крайней мере три типа параллельных вселенных:
а) гиперпространство, или высшие измерения;
б) мультивселенная;
в) квантовые параллельные вселенные.
Самой долгой историей научных дискуссий из всех типов параллельных вселенных может похвастаться параллельная вселенная высших измерений. Здравый смысл и органы чувств говорят нам, что мы живем в трех измерениях (длина, ширина и высота). Как бы мы ни двигали объект в пространстве, его положение всегда можно описать этими тремя координатами. Вообще, этими тремя числами человек может определить точное положение любого объекта во Вселенной, от кончика своего носа до самых отдаленных галактик.
На первый взгляд четвертое пространственное измерение противоречит здравому смыслу. К примеру, когда дым заполняет всю комнату, мы не видим, чтобы он исчезал в другом измерении. Нигде в нашей Вселенной мы не видим объектов, которые внезапно исчезали бы или уплывали в иную вселенную. Это означает, что высшие измерения, если таковые существуют, по размеру должны быть меньше атома.
Три пространственных измерения образуют фундамент, основу греческой геометрии. К примеру, Аристотель в трактате «О небе» писал: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и, кроме них, нет никакой другой величины, так как три [измерения] суть все [измерения]». В150 г, н, э. Птолемей Александрийский предложил первое «доказательство» того, что высшие измерения «невозможны». В трактате «О расстоянии» он рассуждает следующим образом. Проведем три взаимно перпендикулярные прямые линии (как линии, которые образуют угол комнаты). Очевидно, провести четвертую линию, перпендикулярную трем первым, невозможно, следовательно, четвертое измерение невозможно. (На самом деле ему удалось доказать таким образом только одно: наш мозг не способен наглядно представить себе четвертое измерение. С другой стороны, компьютеры постоянно занимаются расчетами в гиперпространстве.)
На протяжении двух тысячелетий любой математик, который отваживался заговорить о четвертом измерении, рисковал подвергнуться насмешкам. В 1685 г. математик Джон Уоллис в полемике о четвертом измерении назвал его «чудовищем в природе, возможным не более, нежели химера или кентавр». В XIX в. «король математиков» Карл Гаусс разработал математику четвертого измерения в значительной степени, но побоялся публиковать результаты, опасаясь негативной реакции. Сам он, однако, проводил эксперименты и пытался определить, действительно ли чисто трехмерная греческая геометрия правильно описывает Вселенную. В одном из экспериментов он поместил трех помощников на вершинах трех соседних холмов. У каждого помощника был фонарь; свет всех трех фонарей образовал в пространстве гигантский треугольник. Сам же Гаусс тщательно измерил все углы этого треугольника и, к собственному разочарованию, обнаружил, что сумма внутренних углов треугольника действительно составляет 180°. Из этого ученый заключил, что если отступления от стандартной греческой геометрии и существуют, то они настолько малы, что их невозможно обнаружить подобными способами.
В результате честь описать и опубликовать основы математики высших измерений выпала Георгу Бернхарду Риману, ученику Гаусса. (Через несколько десятилетий эта математика целиком вошла в общую теорию относительности Эйнштейна.) На своей знаменитой лекции в 1854 г. Риман одним махом опрокинул 2000 лет владычества греческой геометрии и установил основы математики высших, криволинейных измерений; мы и сегодня пользуемся этой математикой.
В конце XIX в. замечательное открытие Римана прогремело по всей Европе и вызвало широчайший интерес публики; четвертое измерение произвело настоящую сенсацию среди артистов, музыкантов, писателей, философов и художников. Скажем, историк искусства Линда Дальримпл Хендерсон считает, что кубизм Пикассо возник отчасти под впечатлением от четвертого измерения. (Портреты женщин кисти Пикассо, на которых глаза смотрят вперед, а нос находится сбоку, представляют собой попытку представить четырехмерную перспективу, ведь при взгляде из четвертого измерения можно одновременно видеть лицо, нос и затылок женщины,) Хендерсон пишет: «Подобно черной дыре, четвертое измерение обладало загадочными свойствами, которые не удавалось до конца понять даже самим ученым. И все же четвертое измерение было гораздо более понятным и представимым, чем черные дыры или любые другие научные гипотезы после 1919 г., за исключением теории относительности».
Другие художники тоже пытались рисовать из четвертого измерения. На картине Сальвадора Дали «Распятие» Христос распят перед странным плывущим в пространстве трехмерным крестом, который на самом деле представляет собой развертку четырехмерного куба. В своей знаменитой картине «Упорство памяти» он попытался представить время как четвертое измерение— отсюда и метаформа растекшихся часов. Картина «Обнаженная фигура, спускающаяся по лестнице» Марселя Дюшана — попытка представить время как четвертое измерение через изображение нескольких стадий движения. Четвертое измерение появляется даже у Оскара Уайльда в рассказе «Кентервильское привидение», ведь привидение там живет в четвертом измерении.
Четвертое измерение фигурирует также в нескольких произведениях Герберта Уэллса, включая «Человека-невидимку», «Историю Платтнера» и «Удивительный визит». (В последнем рассказе, который с тех пор успел стать основой десятков голливудских фильмов и научно-фантастических романов, наша Вселенная каким-то образом сталкивается с параллельной вселенной. Несчастный ангел из соседней вселенной попадает под случайный выстрел охотника и проваливается в нашу Вселенную. В конце концов он, потрясенный алчностью, мелочностью и эгоизмом, царящими в нашей Вселенной, кончает жизнь самоубийством.)
Роберт Хайнлайн в романе «Число зверя» исследует идею о параллельных вселенных с иронией. В этом романе четверо храбрых землян носятся по параллельным вселенным на спортивной машине сумасшедшего профессора, способной передвигаться между измерениями.
В телесериале «Скользящие» мальчик под влиянием одной книги решает построить машину, которая позволила бы ему «скользить» между параллельными вселенными. (Можно добавить, что герой сериала прочитал мою книгу «Гиперпространство».)
Но исторически сложилось так, что физики рассматривали четвертое измерение лишь как забавную диковинку. Никаких свидетельств существования высших измерений не было. Положение начало меняться в 1919 г., когда физик Теодор Калуца написал очень спорную статью, в которой намекнул на существование высших измерений. Начав с общей теории относительности Эйнштейна, он поместил ее в пятимерное пространство (четыре пространственных измерения и пятое — время; поскольку время уже утвердилось как четвертое измерение пространства-времени, физики теперь называют четвертое пространственное измерение пятым). Если делать размер Вселенной вдоль пятого измерения все меньше и меньше,