Шрёдингера для электронов.

(Историки науки потратили немало усилий, пытаясь выяснить в точности, где был и чем занимался Шрёдингер, когда открыл свое знаменитое уравнение, навсегда изменившее современную физику и химию. Оказалось, что Шредингер был сторонником свободной любви и на отдых часто ездил с женой и любовницами. Он также вел подробный дневник, в который заносил всех своих многочисленных любовниц и сложным шифром обозначал каждую встречу. В настоящее время считается, что те выходные, когда было открыто уравнение, Шредингер провел в Альпах, на вилле «Хервиг», с одной из своих подружек.)

Начав решать свое уравнение для атома водорода, Шредингер, к немалому своему удивлению, обнаружил, что энергетические уровни электронов уже до него были точно установлены и опубликованы другими физиками. После этого он понял, что старая модель атома, принадлежащая Нильсу Бору, — та самая, где электроны носятся вокруг ядра и которую до сих пор рисуют в книгах и рекламных проспектах как символ современной науки — на самом деле неверна. Круговые орбиты электронов вокруг ядра атома необходимо заменить волнами.

Можно сказать, что работа Шрёдингера встряхнула физическое сообщество и, подобно брошенному камню, тоже породила разбегающиеся волны. Физики вдруг обнаружили, что могут заглянуть непосредственно в атом, подробно исследовать волны, из которых состоят его электронные оболочки, и точно предсказать их энергетические уровни.

Но оставался еще один вопрос, который не дает физикам покоя даже сегодня. Если электрон описывается как волна, то что же в нем колеблется? Ответ на этот вопрос дал физик Макс Борн; он сказал, что эти волны представляют собой не что иное, как волны вероятности. Они сообщают только о том, с какой вероятностью вы обнаружите конкретный электрон в определенное время в определенной точке. Другими словами, электрон — это частица, но вероятность обнаружить эту частицу задается волной Шрёдингера. И чем выше волна, тем больше шансов обнаружить частицу именно в этой точке.

Получается, что внезапно в самом сердце физики — науки, которая прежде давала нам точные предсказания и подробные траектории любых объектов, начиная с планет и комет и кончая пушечными ядрами, — оказались понятия шанса и вероятности.

Гейзенберг сумел формализовать этот факт, предложив принцип неопределенности[9] — постулат о том, что невозможно знать точную скорость и точное положение электрона в один и тот же момент. Невозможно точно определить и его энергию в заданный промежуток времени. На квантовом уровне нарушаются все фундаментальные законы здравого смысла: электроны могут исчезать и вновь возникать в другом месте, а также находиться одновременно в нескольких местах.

(По иронии судьбы и Эйнштейн, крестный отец квантовой теории, принимавший участие в революционных преобразованиях 1905 г., и Шрёдингер, автор волнового уравнения, пришли в ужас от появления случайных процессов в фундаментальной физике. Эйнштейн писал: «Квантовая механика вызывает огромное уважение. Но внутренний голос подсказывает мне, что это не то, что нужно. Эта теория многое объясняет, но едва ли приближает нас хоть сколько-то к тайне Бога. По крайней мере о себе могу сказать точно: я убежден, что Он не играет в кости».)

Теория Гейзенберга была революционной и противоречивой, но работала. С ее помощью физикам удалось одним махом объяснить огромное число загадочных явлений, включая законы химии. Объясняя своим аспирантам странность и причудливость квантовой теории, я иногда прошу их рассчитать вероятность того, что атомы их тел вдруг разбегутся и соберутся заново по другую сторону кирпичной стены. Подобная телепортация запрещена в ньютоновской физике, но никак не противоречит законам квантовой механики. Ответ, однако, заключается в том, что такого события пришлось бы ждать до конца жизни вселенной и даже дольше. (Если бы вы при помощи компьютера построили график шрёдингеровой волновой функции для собственного тела, то выяснилось бы, что она очень сильно напоминает само тело, но выглядит как бы чуть-чуть лохматой, так как некоторые из ваших волн расползаются за его пределы во всех направлениях. Некоторые из них достигают даже отдаленных звезд. Поэтому существует все же крошечная вероятность того, что однажды вы вдруг проснетесь на далекой чужой планете.)

Тот факт, что электроны, по-видимому, могут находиться во многих местах одновременно, составляет фундамент всей химии. Мы думаем, что электроны обращаются вокруг ядра атома, как тела миниатюрной Солнечной системы. Но между атомом и Солнечной системой есть принципиальные различия. При столкновении в космосе двух Солнечных систем они неизбежно развалятся, планеты при этом отбросит в разных направлениях. Атомы же, сталкиваясь, часто делятся друг с другом электронами и образуют вполне стабильные молекулы. В старших классах школы учитель часто говорит ученикам про «размазанный электрон», напоминающий продолговатый мяч для регби; он соединяет два атома между собой.

Но вот о чем учителя химии почти никогда не рассказывают ученикам. Электрон, о котором идет речь, вовсе не «размазан» между двумя атомами. На самом деле этот «мяч для регби» представляет вероятность того, что электрон находится одновременно во множестве мест внутри данного объема. Другими словами, вся химия, изучающая и объясняющая строение молекул, из которых состоят наши тела, основана на представлении о том, что электроны могут находиться одновременно в нескольких местах; именно такое «совместное владение» электронами, которые умудряются одновременно принадлежать двум атомам, удерживает на месте атомы в молекулах нашего тела. Без квантовой теории наши молекулы и атомы распались бы в мгновение ока.

Этим причудливым, но принципиальным свойством квантовой теории (тем фактом, что существует ненулевая вероятность даже самых странных событий) воспользовался Дуглас Адаме в своем веселом романе «Автостопом по галактике». Автору нужен был удобный способ носиться по всей галактике, поэтому он придумал «двигатель бесконечной невероятности», «чудесный новый способ преодоления громадных межзвездных расстояний за ничтожнейшую долю секунды без нудного блуждания в гиперпространстве». Его машина позволяет произвольно менять вероятность любого квантового события, так что даже чрезвычайно маловероятные события становятся обычными и привычными. В общем, если хотите отправиться в ближайшую звездную систему, нужно просто изменить вероятность вашей рематериализации именно там,' и все! Дело сделано! Вы мгновенно телепортируетесь в нужное место.

На самом деле квантовые «скачки», столь обычные внутри атома, невозможно легко перенести на крупные объекты вроде людей, состоящие из триллионов и триллионов атомов. Даже если электроны в нашем теле прыгают и скачут с места на место в своем фантастическом путешествии вокруг ядра, их так много, что прыжки усредняются и сглаживаются. Именно поэтому, говоря упрощенно, на нашем уровне вещества представляются твердыми и неизменными.

 Итак, хотя на атомном уровне телепортация разрешена, чтобы дождаться подобного странного события на макроскопическом уровне, придется ждать до гибели нашей Вселенной и даже дольше. Но можно ли воспользоваться законами квантовой теории и создать машину для телепортации объектов по требованию, как происходит в научно-фантастических произведениях? Как ни удивительно, ответ однозначен: да, можно.

Эксперимент ЭПР

Ключ к квантовой телепортации кроется в знаменитой работе 1935 г. Альберта Эйнштейна и его коллег Бориса Подольского и Натана Розена. По иронии судьбы трое ученых ставили своей целью раз и навсегда покончить с присутствием вероятности в физике, предложив с этой целью мысленный эксперимент, получивший название эксперимент ЭПР по первым буквам фамилий авторов. (Сокрушаясь по поводу бесспорного экспериментального успеха квантовой теории, Эйнштейн писал: «Чем больший успех имеет квантовая теория, тем глупее она выглядит».)

Если два электрона первоначально колеблются в унисон (такое состояние называется когерентным), то они способны сохранить волновую синхронизацию даже на большом расстоянии друг от друга. Даже если эти электроны окажутся разделены световыми годами, невидимая шрёдингерова волна все равно будет связывать их между собой подобно пуповине. Если с одним из электронов что-то произойдет, то какая-то часть информации об этом событии будет немедленно передана второму. Это явление называется квантовой запутанностью и основано на концепции о том, что когерентные частицы обладают какой-то глубинной связью.

Возьмем (мысленно, разумеется) два когерентных электрона; раз они когерентны, значит,

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату