точек
В главе 14.vii упоминался недавний результат, полученный Бейсом и Хадсоном, — первое литлвудово нарушение (когда
Ясно, что пришлось бы взять не 13, а большее число значений функции
Изображенные на рисунке 21.7 двойные спирали пересекают положительную часть вещественной оси последовательно все далее на восток — в точках 2,3078382, 6,1655995 и 13,4960622. Если бы мы проводили вычисления для числа Бейса-Хадсона, то двойная спираль пересекла бы вещественную ось при гораздо большем значении, определяемом числом, которое начинается как 325 771 513 660 и далее содержит еще 144 цифры
Во всех вычислениях, проводившихся в данной главе, предполагалось (о чем мы время от времени напоминали), что ГР верна. Если она
Мы достигли главной цели, поставленной перед математической частью этой книги, — показать глубокую связь между распределением простых чисел, воплощенным в функции
Все это открылось нам в блестящей работе Бернхарда Римана 1859 года. Сегодня, конечно, мы знаем намного больше, чем было известно в 1859 году. Однако великая головоломка, впервые сформулированная в той работе, по-прежнему остается нерешенной — она противостоит атакам лучших умов планеты так же твердо, как когда Риман писал о своих «недолгих бесплодных попытках» доказать ее в далекие времена, когда аналитическая теория чисел только-только родилась. Каковы же перспективы на сегодняшний день, когда усилия расколоть орешек ГР прилагаются уже пятнадцатое десятилетие?
Глава 22. Она или верна, или нет
Можно находить известное удовлетворение в наличии некоторой симметрии, выражающейся в том, что после стодвадцатилетнего пребывания среди математиков Гипотеза Римана (ГР) привлекла внимание и физиков. Как отмечалось в главе 10.i, сам Риман в большой степени обладал воображением, присущим ученому-физику. «Четыре из девяти работ, которые он успел сам опубликовать, относятся к физике» (Лаугвитц). Кроме того, как мне напомнила специалист по теории чисел Ульрике Форхауер[202], во времена Римана деление на математиков и физиков было не слишком отчетливым. А незадолго до того оно не проводилось вовсе.
Гаусс был первоклассным физиком в той же мере, что и первоклассным математиком, и его немало озадачила бы идея рассматривать эти две дисциплины по отдельности.
Джонатан Китинг[203] рассказывает следующую историю — на мой взгляд, имеющую легкий оттенок сверхъестественного:
Я отдыхал в горах Гарца вместе с несколькими коллегами. Двое из нас решили, что стоит проехать 30 миль, отделявших нас от Геттингена, чтобы взглянуть на черновики Римана, хранящиеся там в библиотеке. Лично мне было интересно посмотреть на заметки, относящиеся примерно ко времени написания работы 1859 года о дзета-функции.
Но мой коллега — прикладной математик, которого не занимала теория чисел, интересовался совершенно другой работой Римана, имеющей отношение к возмущениям. Представим себе большую каплю газа в пустом пространстве, удерживаемую в одно целое гравитационным притяжением между частицами этого газа. Что будет, если по ней хорошенько ударить? Вообще-то могут случиться две основные вещи: капля может разлететься на части, а может начать вибрировать с некоторой частотой. Все зависит от величины, направления и места приложения удара, а также формы и размера исходной капли и т.д.
Мы добрались до библиотеки, и я попросил, чтобы мне показали заметки по теории чисел, а мой коллега — по теории возмущений. Библиотекарь что-то проверила, а потом вернулась и сказала, что нам обоим нужна одна и та же подшивка черновиков Римана.
Разумеется, добавляет Джонатан, в распоряжении Римана не было операторной алгебры XX столетия, которая помогла бы ему в задаче о возмущениях и дала бы ему все возможные частоты вибраций в виде спектра собственных значений. Ему приходилось продираться сквозь дифференциальные уравнения, создавая специально для своих целей некоторый зачаток теории операторов. И все же трудно поверить, что ум столь острый и столь проницательный, как у Римана, не заметил бы аналогии между нулями дзета-функции, нанизанными на критическую прямую, и спектром частот в теории возмущений — аналогии, которая при столь драматических обстоятельствах высветилась за чашкой вечернего чая в Фалд-Холл 113 лет спустя!
Мне довелось услышать этот рассказ Китинга в Институте Куранта при Нью-Йоркском университете в