возбуждаются стимулом только одной модальности. В этом смысле каждый рецептор выполняет роль фильтра, т.е. передает в ЦНС информацию только о стимулах одной модальности. Исходя из этого рецепторы можно разделить на ряд групп по модальности: механо-, термо-, хеморецепторы и др.
Важным понятием сенсорной физиологии является
где F – частота импульсов в соответствующем афферентном волокне; k – константа; S – величина стимула; S0 – амплитуда порогового стимула; n – показатель степени (для большинства рецепторов около 1).
Это уравнение описывает широкий класс реакций рецепторов. Следует заметить, что передаточная функция рецепторов в общем случае может быть описана как «функция сжатия», так как с увеличением одной переменной (силы стимула) шкала другой (частота импульсов в афферентном волокне) все больше сжимается (рис. 6.3).
Очевидно, что такая сжимающаяся шкала имеет преимущество перед линейной шкалой. «Прибор» с такой шкалой позволяет измерять величины в широком диапазоне, не слишком растягивая шкалу, за счет того что для малых величин шкала растянута, а для больших – сжата, чем и достигается удовлетворительная точность измерений, как при высоких, так и при низких уровнях сигнала.
Другой широко распространенный способ кодирования в ЦНС получил название «кодирование номером линии». Этот тип кодирования хорошо прослеживается на примере передачи информации от кожи. В коже находится большое число рецепторов (рецепторы давления, температурные, болевые и др.), каждый из которых имеет собственный канал, по которому информация передается в ЦНС (подробнее см. ниже).
Большое число рецепторов спонтанно разряжаются в отсутствие каких-либо раздражителей. Например, рецепторы вестибулярного аппарата постоянно активны, что дает им возможность сигнализировать не только о величине, но и о направлении действующего стимула (например, ускорения). Для этих случаев порог определяется не как возникновение, а как изменение реакции рецептора – дифференциальный порог.
При длительном действии адекватного стимула порог срабатывания данного рецептора повышается. Это явление называется
Отдельное нервное афферентное волокно 1-го порядка собирает информацию с более или менее широкой области поля рецепторов. Та часть рецепторной поверхности, от которой сигналы получает одно афферентное волокно, называется его
Одним из важных принципов взаимодействия в нейронных сетях является
В состав сенсорной системы, кроме описанного 1-го уровня обработки информации, входит также ряд других структур головного мозга с соответствующими проводящими путями. Одними из важных станций переключения афферентной импульсации к коре служат специфические ядра таламуса. Высшим уровнем обработки сенсорных сигналов является кора больших полушарий, которая достигает наибольшего развития у млекопитающих и особенно у приматов. Кора головного мозга млекопитающих, покрывающая большие полушария конечного мозга, благодаря многочисленным складкам может иметь значительную площадь; у человека, например, она достигает 1700–2500 см2. В начале XX века была разработана классификация полей коры по признакам особенностей клеточного состава и характера миелинизации аксонов. На основании изучения клеточного состава отдельных слоев в коре выделено 11 областей, которые, в свою очередь, были разделены на 52 поля (рис. 6.4).
Толщина коры у млекопитающих разных видов колеблется от 1 до 6 мм. Нейроны по толщине коры распределены неравномерно и обычно образуют в новой коре 6 слоев, в старой коре – 3 слоя (рис. 6.5). Однако в отдельных областях новой коры количество слоев может увеличиваться или уменьшаться. Слои V и VI содержат преимущественно крупные пирамидные нейроны, аксоны которых образуют эфферентные пути из коры. Основные афферентные пути в кору заканчиваются на нейронах верхних слоев (III и IV). Эти слои наиболее сильно развиты в центральных отделах зрительного, слухового и кожного анализаторов. По современным представлениям, такое деление слоев коры на афферентные и эфферентные нужно считать в значительной степени условным. В последние годы при изучении внутрикорковых связей установлено, что эфферентные аксоны нейронов нижних слоев образуют многочисленные возвратные коллатерали, которые восходят до самых верхних слоев коры.
В соответствии с цитоархитектоническими и нейрофизиологическими данными выделяют