например, получают вход от ограниченного участка кожи, но рецептивные поля отдельных нейронов сильно перекрываются.

Симметричные области моторной коры двух полушарий связаны между собой через мозолистое тело. Взаимными связями через мозолистое тело связаны между собой проксимальные части конечностей и аксиальная мускулатура туловища и лица. Корковые представительства дистальной мускулатуры конечностей не связаны между собой через мозолистое тело. Предполагают, что эти связи обеспечивают необходимую интеграцию двигательного контроля. Вместе с тем перерезка мозолистого тела не вызывает грубых нарушений координации движений.

Как видно из приведенной схемы на рис. 5.21, все эти связи – реципрокные (взаимные) и организованы соматотопически. Можно предположить, что по ним сенсорная (постцентральная) кора обеспечивает моторные команды кожной и проприоцептивной соматотопически организованной информацией. Вместе с тем известно, что после удаления постцентральной (сенсорной) коры в моторной коре продолжают регистрироваться вызванные потенциалы в ответ на кожные и проприоцептивные стимулы. Кроме связей Ml с постцентральной сенсорной корой, она имеет реципрокную связь с премоторной и дополнительной моторной корой. Эти две последние области коры в настоящее время рассматривают как источник моторных команд в первичную моторную кору Ml.

Нейронная организация MI. Эфферентный выход. Изучение активности отдельных нейронов пирамидного тракта при выполнении животными (кошками и обезьянами) движений позволило составить представление о кодировании параметров движения частотой разрядов. Было установлено, что активация пирамидного нейрона опережает активацию соответствующей мышцы (по активации ЭМГ) на 100 мс и более. Была также выявлена зависимость частоты разрядов данного пирамидного нейрона от силы (F), развиваемой мышцей, или от ее изменения (dF/dt).

Сенсомоторная организация отдельных колонок моторной коры.

Как уже указывалось выше, методом микростимуляций в моторной коре млекопитающих выявляются эфферентные колонки нейронов, которые активируют мотонейроны, принадлежащие данной мышце. Было изучено соотношение афферентных проекций и эфферентного выхода для отдельных колонок моторной коры. В качестве конкретного примера приведем результаты исследования нейронного представительства области большого пальца руки обезьяны (рис. 5.22). В области коркового представительства большого пальца производили микроэлектродную регистрацию активности отдельных нейронов и определяли их рецептивные поля. Этот же микроэлектрод использовали для электрической микростимуляции (током силой 5–10 мкА) при изучении эфферентного выхода данного нейрона (или группы нейронов, так как при микростимуляции через полисинаптические связи была задействована группа нейронов). На рис. 5.22 видно, что эфферентные нейроны данной колонки получают тактильный вход главным образом от рецептивных полей той же части пальца, которая расположена на пути его движения, вызванного внутрикорковой микростимуляцией. Специальные исследования показали, что наряду с тактильным входом корковые нейроны соответствующей колонки получают также информацию от суставных и мышечных рецепторов.

Было установлено, что наиболее интенсивный афферентный вход получают нейроны верхних слоев коры, а нейроны V–VI слоев, где отмечается самый низкий порог двигательных реакций в ответ на микростимуляцию, практически не получают афферентного входа. На основании этих наблюдений пришли к заключению, что в физиологических условиях афферентное возбуждение поступает на нейроны верхних слоев, соответствующим образом обрабатывается, передается на нейроны нижних слоев и там происходит формирование двигательной команды.

Участие премоторных и теменных полей коры в двигательном контроле. Корковый уровень двигательного контроля представлен также премоторными полями коры и дополнительным моторным полем, а также полем 5 теменной коры, о функции которого пока известно очень мало.

Дополнительная моторная кора (ДМК). У приматов ДМК расположена на медиальной поверхности полушария (см. рис. 5.21). Подобно первичной моторной коре ДМК организована соматотопически. Движения, вызванные электрической стимуляцией ДМК, по сравнению со стимуляцией моторной коры выглядят более сложными и растянутыми во времени. Такие движения часто похожи на целенаправленные действия, в ряде случаев они развиваются билатерально на обеих конечностях и часто длятся больше времени электрической стимуляции ДМК.

При электрической стимуляции ДМК мозга человека во время нейрохирургических операций часто наблюдали вокализацию, которая могла сопровождаться гримасами лица, координированными движениями конечностей и торможением произвольных движений.

Экстирпация ДМК у человека вызывает временную потерю речи (афазию), которая обычно проходит через несколько недель. Отмечают также замедление выполнения ритмических движений. Удаление ДМК у низших обезьян вызывает признаки нарушения целенаправленных движений (апраксию), нарушается также координация движений обеих рук. Вследствие этого у обезьян резко нарушается выполнение бимануальных задач, в которых необходима координация обеих рук. Нейронная активность ДМК коррелирует с характером движения, но установить связь с отдельными параметрами самого движения не удается. Предполагают, что нейронные сети ДМК принимают непосредственное участие в обработке сенсорной информации и в подготовке к движению (препрограммирование). В пользу этого говорит также усиление локального кровотока в ДМК у человека при намерении выполнить движение.

Участие в программировании движений премоторных полей коры.

Поражение премоторных зон у человека не сопровождается параличом контралатеральных конечностей. Вместе с тем их основным симптомом является отчетливое нарушение двигательных навыков. Клинически это проявляется в том, что у больного изменяется почерк, машинистка теряет быстроту и плавность своей работы, квалифицированный рабочий не способен автоматизированно выполнять серию операций, входящих в привычный двигательный акт. В клинике такие симптомы описывают под названием «инертность двигательных стереотипов». Характерными являются невозможность больного переключаться, например, с сильных ударов на слабые при отстукивании ритма ладонью, а также своеобразное «заклинивание» движения, двигательная персеверация (рис. 5.23). Наиболее отчетливо нарушения проявляются в контралатеральной очагу руке, но при поражении левого (доминантного) полушария они часто проявляются в работе обеих рук. Клиницисты отмечают, что у таких больных сохранены как намерения выполнить движение, так и общий план его выполнения, однако в своей исполнительной части движение высвобождается из-под влияния двигательной программы.

В тех случаях, когда поражение располагается в нижних отделах премоторной зоны левого (доминантного по речи у правшей) полушария, происходит нарушение речи. Нарушения проявляются при переходе больного от одной артикуляции к другой (при произнесении любого слова или словосочетания). Нарушение кинетической организации артикуляции является основой той формы моторной афазии, которую описал П. Брока (1861). Следует отметить, что нарушения у больных с поражениями нижних отделов левой премоторной зоны проявляются не только в устной речи, но и в письме. Нарушения письменной речи считают следствием нарушения плавности перехода от одного компонента слова к другому и патологической персеверации однажды написанного слова. Некоторые дополнительные сведения Вы найдете в главе 7 «Высшие функции нервной системы».

Регистрация активности отдельных нейронов показала, что нейроны премоторной коры низших обезьян активируются до выполнения движения, что может указывать на их связь с программированием этого движения. При этом в структуре нейронной реакции находит отражение направление, в котором будет производиться данное движение (в ответ, например, на условный сигнал). Изучение корреляции

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату