последней вспышке сверхновой произвести пыль. Только вот что появилось раньше – яйцо или курица? Первая пыль, необходимая для рождения звезды, или первая звезда, которая почему-то родилась без помощи пыли, состарилась, взорвалась, образовав самую первую пыль.
Что было вначале? Ведь когда 14 млрд. лет назад произошел Большой взрыв, во Вселенной были только водород и гелий, никаких других элементов! Это потом из них стали зарождаться первые галактики, огромные облака, а в них – первые звезды, которым надо было пройти долгий жизненный путь. Термоядерные реакции в ядрах звезд должны были «сварить» более сложные химические элементы, превратить водород и гелий в углерод, азот, кислород и так далее, а уж после этого звезда должна была выбросить все это в космос, взорвавшись или постепенно сбросив оболочку. Затем этой массе нужно было охладиться, остыть и, наконец, превратиться в пыль. Но уже через 2 млрд. лет после Большого взрыва, в самых ранних галактиках, пыль была! С помощью телескопов ее обнаружили в галактиках, отстоящих от нашей на 12 млрд. световых лет. В то же время 2 млрд. лет – слишком маленький срок для полного жизненного цикла звезды: за это время большинство звезд не успевает состариться. Откуда в юной Галактике взялась пыль, если там не должно быть ничего, кроме водорода и гелия, – тайна.
Мало того что межзвездная пыль выступает в роли своеобразного вселенского хладагента, возможно, именно благодаря пыли в космосе появляются сложные молекулы.
Дело в том, что поверхность пылинки может служить одновременно и реактором, в котором образуются из атомов молекулы, и катализатором реакций их синтеза. Ведь вероятность того, что сразу много атомов различных элементов столкнутся в одной точке, да еще и провзаимодействуют между собой при температуре чуть выше абсолютного нуля, невообразимо мала. Зато вероятность того, что пылинка последовательно столкнется в полете с различными атомами или молекулами, особенно внутри холодного плотного облака, довольно велика. Собственно, это и происходит – так образуется оболочка межзвездных пылинок из намерзших на нее встреченных атомов и молекул.
На твердой поверхности атомы оказываются рядом. Мигрируя по поверхности пылинки в поисках наиболее энергетически выгодного положения, атомы встречаются и, оказываясь в непосредственной близости, получают возможность прореагировать между собой. Разумеется, очень медленно – в соответствии с температурой пылинки. Поверхность частиц, особенно содержащих в ядре металл, может проявить свойства катализатора. Химики на Земле хорошо знают, что самые эффективные катализаторы – это как раз частицы размером в доли микрона, на которых собираются, а затем и вступают в реакции молекулы, в обычных условиях друг к другу совершенно «равнодушные». По-видимому, так образуется и молекулярный водород: его атомы «налипают» на пылинку, а потом улетают с нее – но уже парами, в виде молекул.
Очень может быть, что маленькие межзвездные пылинки, сохранив в своих оболочках немного органических молекул, в том числе и простейших аминокислот, и занесли на Землю первые «семена жизни» около 4 млрд. лет тому назад. Это, конечно, не более чем красивая гипотеза. Но в ее пользу говорит то, что в составе холодных газопылевых облаков найдена аминокислота – глицин. Может, есть и другие, просто пока возможности телескопов не позволяют их обнаружить.
Исследовать свойства межзвездной пыли можно, разумеется, на расстоянии – с помощью телескопов и других приборов, расположенных на Земле или на ее спутниках. Но куда заманчивее межзвездные пылинки поймать, а потом уж обстоятельно изучить, выяснить – не теоретически, а практически, из чего они состоят, как устроены. Вариантов тут два. Можно добраться до космических глубин, набрать там межзвездной пыли, привезти на Землю и проанализировать всеми возможными способами. А можно попытаться вылететь за пределы Солнечной системы и по пути анализировать пыль прямо на борту космического корабля, отправляя на Землю полученные данные.
Первую попытку привезти образцы межзвездной пыли, и вообще вещества межзвездной среды, несколько лет назад предприняло NASA. Космический корабль оснастили специальными ловушками – коллекторами для сбора межзвездной пыли и частиц космического ветра. Чтобы поймать пылинки, не потеряв при этом их оболочку, ловушки наполнили особым веществом – так называемым аэрогелем. Эта очень легкая пенистая субстанция (состав которой – коммерческая тайна) напоминает желе. Попав в нее, пылинки застревают, а дальше, как в любой ловушке, крышка захлопывается, чтобы быть открытой уже на Земле.
Этот проект так и назывался Stardust – Звездная пыль. Программа у него грандиозная. После старта в феврале 1999 года аппаратура на его борту в конечном итоге должна собрать образцы межзвездной пыли и отдельно – пыль в непосредственной близости от кометы Wild-2, пролетавшей неподалеку от Земли в феврале прошлого года. Теперь с контейнерами, наполненными этим ценнейшим грузом, корабль летит домой, чтобы приземлиться 15 января 2006 года в штате Юта, неподалеку от Солт-Лейк-Сити (США). Вот тогда-то астрономы наконец увидят своими глазами (с помощью микроскопа, конечно) те самые пылинки, модели состава и строения которых они уже спрогнозировали.
А в августе 2001 года за образцами вещества из глубокого космоса полетел Genesis. Этот проект NASA был нацелен в основном на поимку частиц солнечного ветра. Проведя в космическом пространстве 1 127 дней, за которые он пролетел около 32 млн. км, корабль вернулся и сбросил на Землю капсулу с полученными образцами – ловушками с ионами, частицами солнечного ветра. Увы, произошло несчастье – парашют не раскрылся, и капсула со всего маху шлепнулась об землю. И разбилась. Конечно, обломки собрали и тщательно изучили. Впрочем, в марте 2005-го на конференции в Хьюстоне участник программы Дон Барнетти заявил, что четыре коллектора с частицами солнечного ветра не пострадали, и их содержимое, 0,4 мг пойманного солнечного ветра, ученые активно изучают в Хьюстоне.
Впрочем, сейчас NASA готовит третий проект, еще более грандиозный. Это будет космическая миссия Interstellar Probe. На этот раз космический корабль удалится на расстояние 200 а. е. от Земли (а. е. – расстояние от Земли до Солнца). Этот корабль никогда не вернется, но весь будет «напичкан» самой разнообразной аппаратурой, в том числе – и для анализа образцов межзвездной пыли. Если все получится, межзвездные пылинки из глубокого космоса будут наконец пойманы, сфотографированы и проанализированы – автоматически, прямо на борту космического корабля.
1. Гигантское галактическое молекулярное облако размером 100 парсек, массой 100 000 солнц, температурой 50 К, плотностью 10
2. Рождение звезды внутри газопылевого облака
3. Новая звезда своим излучением и звездным ветром разгоняет от себя окружающий газ
4. Молодая звезда выходит в чистый и свободный от газа и пыли космос, отодвинув породившую ее туманность
5. Зарождение гравитационно-неустойчивого облака размером 2 000 000 солнц, с температурой около 15 К и исходной плотностью 10^
6. Через несколько сотен тысяч лет у этого облака образуется ядро с температурой около 200 К и размером 100 солнц, масса его пока равна только 0,05 от солнечной
7. На этой стадии ядро с температурой до 2 000 К резко сжимается из-за ионизации водорода и одновременно разогревается до 20 000 К, скорость падения вещества на растущую звезду достигает 100 км/с
8. Протозвезда размером с два солнца с температурой в центре 2x10^