Логика, посредством которой лучше всего достигается и обосновывается знание, независимо от того, формулируется оно в номологических высказываниях или нет, – это не логика дедуктивного доказательства и не логика подтверждения посредством вывода следствий из условий, а также не логика доказательства посредством особых методов индукции. Она скорее является, как подсказывает предшествующий анализ взглядов Рейхенбаха, логикой вероятностей, по отношению к которой дедуктивная логика представляет собой просто предельный случай, а особые методы индукции – вспомогательные средства. Следовательно, можно утверждать, что проблема вероятностей составляет ядро любой теории познания.
Наиболее удовлетворительным подходом к проблеме вероятностей является следующий: начинать с чисто формального исчисления, в котором можно построить всю систему целиком, исходя из постулируемых аксиом в соответствии с принятыми правилами. К счастью, большая часть такого исчисления уже была разработана математиками в форме широко принятых систем правил, позволяющих переходить без обращения к фактам от одного множества вероятностных высказываний к другому. Суммируя существенные признаки этого исчисления в первых восьми главах своей «Теории вероятностей», Рейхенбах переходит в последующих главах этой книги к более философским проблемам интерпретации формального исчисления и применимости его к физическим объектам. Обе проблемы до некоторой степени усложняются тем фактом, что термин «вероятность» иногда применяется для обозначения
Чтобы интерпретация исчисления вероятностей служила разъяснительным инструментом, не связанным с необоснованными предположениями, нужно показать, что все исчисление тавтологически вытекает из принятой интерпретации. Этому условию (в той мере, в какой речь идет о вероятности последовательностей событий), очевидно, удовлетворяет интерпретация в терминах относительной частоты. Такая интерпретация рассматривает вероятность определенного рода событий как предел частоты, с которой этот вид событий встречается в соответствующей последовательности. Существование предела для каждой последовательности, включающей определенную частоту, понимается в том смысле, что для любой, сколь угодно малой разности можно указать такое число случаев, что суммарная относительная частота во всех последующих случаях не будет отклоняться от рассматриваемой относительной частоты больше, чем на эту разность. То, что из этой интерпретации действительно следуют все правила исчисления вероятностей, вытекает из того обстоятельства, что это исчисление, несмотря на то, что оно является чисто формальным, предназначено как раз для выполнения требований этой интерпретации.
Однако эта интерпретация содержит некоторые трудности. Во-первых, если последовательность бесконечна, то никакой ее конечный сегмент не накладывает никаких ограничений на окончательную частоту. К счастью, однако, ряды, с которыми мы имеем дело, всегда конечны и нам не приходится иметь дело с тем, что нельзя было бы финитизировать или ограничить разумными пределами. Вторая трудность, возникающая из решения первой, заключается в том факте, что понятие предела применимо, строго говоря, только к бесконечным рядам, поскольку отклонения от заданной частоты могут неограниченно уменьшаться, только если ряд продолжается неограниченно. Выход из этой трудности можно найти в том, что понятие предела, как и большинство законов физики, является полезной идеализацией и что если даже оно не работает вполне совершенно, оно тем не менее является достаточным приближением в случае очень больших чисел, с которыми приходится иметь дело.
Что касается обоснованности вероятностных высказываний о физических объектах, то возможны два типа теорий. Априорные теории пытаются найти среди событий по крайней мере некоторые связи, не зависящие от фактически встречающихся частота для этого так или иначе используется предположение о равновозможности каких-то неизвестных факторов. Однако такие теории фактически построены на механизме азартных игр, к которому применимы определенные, уже разработанные, но в недостаточной степени признанные соображения. Когда эти соображения должным образом учитываются, любой надежный фактор сводится к встречаемой частоте. Тем самым мы возвращаемся назад, к апостериорному базису, в который входят только наблюдаемые частоты и формальное исчисление.
Когда мы рассматриваем вероятности не последовательностей, а отдельных событий, таких, как вероятность того, что сегодня будет дождь, мы, по-видимому, имеем дело с совершенно другим понятием вероятности. Иногда это новое понятие истолковывается как степень ожидания, а иногда как специфическая характеристика. Но первая трактовка затемняет тот факт, что вероятности мыслятся, как правило, объективными, а не субъективными; а вторая не дает основы ни для действия, ни для установления вероятностей, в терминах которых обосновывается смысл. На самом деле то, что является существенным в предполагаемой вероятности отдельного события, можно свести к относительной частоте, обнаруживая более длинные последовательности и высчитывая в них частоту событий рассматриваемого рода. Так, например, вероятность того, что сегодня будет дождь, можно получить в терминах относительной частоты дождливых дней ко всему классу дней, напоминающих в некоторых определенных отношениях сегодняшний день. Еще лучшим путем достижения того же результата был бы перенос исследования на металингвистический уровень и рассмотрение вероятности как относительной частоты достоверности высказывания, описывающего рассматриваемое событие, в некотором классе связанных с ним высказываний.
Поскольку даже наши высказывания о событиях, в терминах которых определяются относительные частоты, являются только вероятностными, полное определение вероятности требует вместо обычной двузначной – многозначной логики, в которой истинность и ложность являются только конечными значениями шкалы, колеблющейся от 0 до 1. Как для общих вероятностных задач, так и для интерпретации квантовой механики Рейхенбах разработал такую логику вероятностей.
Проблема обоснования индукции по существу совпадает с проблемой обоснования метода простого перечисления, связанного с частотной интерпретацией вероятностей. В этой связи становится с самого начала очевидным, что этот метод может быть обоснован, если предположить, что частоты, наблюдаемые в ряду, имеют пределы. Попросту, если брать частоту, наблюдаемую до определенного момента, как начальную оценку, а затем корректировать ее с каждым получением существенно новых данных, то получаемая оценка в конечном счете может быть сделана сколь угодно точной, если только существует предел. Если имеются подтверждающие данные, как это бывает почти во всех научных процедурах, то требуемого приближения можно достигнуть довольно быстро в вероятностных терминах. В ряде случаев исходные эксперименты могут даже допускать точную оценку на основе только единичного случая. Кроме того, хотя в случае отсутствия подтверждающих данных первоначальная оценка, так сказать, слепа в том смысле, что ей не приписывается никакого «веса», некоторый вес можно приписать последующей, вторичной оценке, ссылающейся на первую в метаязыке; и эту оценку в свою очередь можно взвесить в новом метаязыке, так что первая оценка может быть сделана достаточно надежной и только последняя по необходимости остается слепой.
Однако предположение о существовании пределов наблюдаемых последовательностей фактически является необоснованным. Это предположение, представляющее собой одну из форм учения о единообразии природы, может рационально обосновываться только с помощью индукции и поэтому не годится для обоснования самой индукции. Другая возможность – принятие синтетических априорных суждений – также ничего не дает; так что если обоснование индукции означает обоснование
3.3.3 Карл Гемпель
Хотя Карл Гемпель (1905-1997), позже профессор Принстонского университета, был членом Берлинской группы Рейхенбаха и продолжал придерживаться многих характерных для этой группы