um в рамках S (принадлежащего к одному из видов выражений, для которого определен pri) и uk является переводом um на язык М, истинно в М.

Если pri является адекватным, то мы также называем его определение и его десигнат, т.е. отношение, определенное как обозначение, адекватным. Это определение адекватности оставляет открытым вопрос о том, какие типы принимаются в качестве аргументов для pri; оно определяет только то, как предикат для обозначения должен использоваться для определенных типов, если мы решили использовать его для этих типов. Следовательно, мы можем, например, ограничить употребление pr, в смысле отмеченного выше возражения. Однако здесь предполагается использовать его для всех типов, для которых имеются переменные в М, т.е. принять в качестве второго аргумента uk любое выражение значения любой переменной в М. Практическое оправдание данного определения адекватности лежит в следующих двух фактах:

1. Оно дает общее правило для всех различных типов, причем простым способом;

2. оно, по-видимому, находится в согласии с обычным использованием термина «обозначение», по крайней мере постольку, поскольку это употребление имеет силу.

На основе адекватного отношения обозначения вопрос о десигнате объектного имени разрешается в пользу предмета, а не в пользу класса однородных предметов. Например, если «DesG» есть адекватный предикат (в М, т.е. в английском языке) для обозначения в немецком языке, то следующие предложения истинны:

а. «DesG („Pferd“, horse»);

b. «DesG („drei“, three»).

Если «DesS3» определено так, как указано выше (имея место «DesIndS3», «DesAttrS3» и «DesPropS3» соответственно), то он является адекватным предикатом для обозначения в S3. Помимо других предложений, следующие должны стать истинными:

а. «DesS3 („а“, Чикаго»);

b. «DesS3 („P“, большой»);

с. «DesS3 („Р(а)“, Чикаго – большой»);

все три предложения истинны. Мы видим, что адекватность требует от нас писать на месте аргумента «большой» вместо «большевизна» или «свойства быть большим» или «класса больших вещей»; и сходным образом мы пишем «лошадь» вместо «лошадность» или «класс лошадей». Это указывает на то, что мы можем приписывать предикатам десигнаты, не употребляя ни термин «свойство», ни термин «класс». (Вопрос о том, является ли десигнат, например, большой, свойством или классом не имеет непосредственного отношения к употреблению нами отношения обозначения, однако конечно же, имеет ответ – зависящий попросту от того, является ли данный язык экстенсиональным, или насколько он экстенсионален. То же самое касается вопроса о том, являются ли десигнаты предложений (sententional designata) истинностными значениями или чем-то иным.)

На основе «обозначения» («designation») (D2) Карнап определяет термин «синонимичный» («synonymos»). Таким образом термин «синонимичный» как в более узком, так и в более широком смысле в соответствии с более узкой или более широкой областью применения, выбранной для термина «обозначение».

D12-2.uiв Sm синонимичноuj в Sn = Df ui обозначает в Sm ту же самую сущность, что и uj в Sn.

Таким образом, констатирует Карнап, отношение синонимии не ограничивается выражениями одной системы. Большинство семантических отношений можно применить к выражениям различныхсистем, даже к тем, которые для простоты определяем относительно одной системы.

L-семантика. L-семантика занимается исследованием проблем логическойистины («L-истинно»), логическойвыводимости («L-импликация») и связанных с ними понятий (L-понятий). При этом предполагается, что логика, в смысле теории логической выводимости и тем самым логической истины является отдельной частью семантики. Проблема определения L-понятий не только для отдельных систем (особенная L-семантика), но и для системы вообще (общая L-семантика) пока еще не нашла удовлетворительного решения.

Логические и дескриптивные знаки. В своем исследовании природы логической дедукции и логической истины Карнап исходит из убеждения, что логика является отдельной частью семантики, а потому понятия логической выводимости и логической истины являются семантическими понятиями. Они относятся к особенному виду семантических понятий, которые Карнап называет L- понятиями. Для логической истины он использует термин « L-истинно», для логческой выводимости – « L- импликация». Если даны правила семантической системы S и тем самым понятие истины в S, то L-понятия также определены в известном смысле; тем не менее задача их определения на базе радикальных понятий (а именно, «обозначение» и «истинно») встречается с определенными трудностями.

Прежде всего Карнап проводит различие между двумя видами выражений, которые он называет дескриптивными и логическими выражениями. При этом он отмечает, что имеется тесная связь между понятиями «дескриптивный» и «логический» и L-понятиями. Понятия «дескриптивный» и «логический» играют огромную роль в логическом анализе языка; однако для них также не известно удовлетворительного точного определения в общей семантике. К дескриптивнымзнакам обычно относят имена отдельных предметов в мире, т.е. отдельных вещей или частей вещей или события (например, «Наполеон», «озеро Мичиган», «Французская революция»), знаки, обозначающие эмпирические свойства, включая виды субстанций, и отношения вещей, мест, событий и т.д. (например, «черный», «собака», «гражданин»), эмпирические функции вещей, точки и т.д. (например, «вес», «эпоха», «температура», «цена»). Примером логическихзнаков являются сентенциальные связки («(», «(» и т.д.), знак оператора общности («каждый»), знак отношения включения элемента в класс («(», «есть какой-то»), дополнительные знаки (скобки и точка, обычно используемые в символической логике), знак логической необходимости в (не-экстенсиональной) системе модальностей («N»). Кроме того, логическими считаются все те знаки, которые определимы при помощи перечисленных выше логических знаков, например, знак оператора существования («(», или «некоторый»), знаки для универсального и нулевого класса всех типов, знак тождества («=», «является тем же самым, что и»), все знаки системы Уайтхеда и Рассела и практически все иные системы символической логики, все знаки математики (включая арифметику, анализ реальных чисел, инфинетезимальное исчисление, но не геометрию) со значением, которое они имеют, когда применяются в науке, все логические модальности (например, «строгая импликация» Льюиса). Определенный знак считается дескриптивным, если его дефиниенс содержит дескриптивный знак; в противном случае он считается логическим знаком. Выражение называется дескриптивным, если оно содержит дескриптивный знак; в противном случае оно является логическим.

Когда мы строим семантическую систему S, то обычно отдаем себе отчет в значении каждого знака; а затем в соответствии с этим намерением мы формулируем правила. В случае подобном этому нетрудно определить «логический знак в S» и «дескриптивный знак в S» таким образом, что различие будет согласовываться с общей концепцией различия между дескриптивными и логическими знаками, с одной стороны, и со значениями, предполагаемыми для знаков и сформулированными при помощи правил. Это различие обычно делается в форме простого перечисления логических или дескриптивных знаков, с которых начинается построение системы.

Что же касается переменных, то на первый взгляд кажется, что их следует считать логическими знаками. Более тщательный анализ, однако, показывает, что в отношении некоторых языков эта точка зрения не будет находиться в согласии с проведенным выше различием между дескриптивными и логическими знаками. В частности, это имеет место в случае с переменной, область

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату