этом смысле истина буквально невыразима.
Однако остается спорным, соответствует ли разговорный язык условиям теоремы Тарского о такой невозможности. Тарский, очевидно, остро сознавал данную проблему. Реальные причины, по которым он возражал против определений истины в разговорном языке, фактически основаны больше на открытости и неправильности естественных языков, чем на его собственной теореме. Основная мнимая иррегулярность, которую имел в виду Тарский, состояла в неудаче его формального подхода к определению истины, т.е. в неудаче принципа композициональности, реальное значение которого в предложенной теории – семантическая независимость от контекста. Предпосылка о такой независимости от контекста в семантике естественных языков, по мнению Хинтикки, совершенно необоснованна. Он считает, что отрицательные результаты Тарского – хотя они и правильны – не закрывают проблему, а те следствия, которые им принято приписывать, весьма дискуссионны. Неопределимость таких металогических понятий как истина, общезначимость (истинность во всех моделях) и логическое следование на первопорядковом уровне показывает, что обычная первопорядковая логика в некотором важном смысле не является самодостаточной. Отсюда проясняется несогласие Хинтикки с предложением Фреге считать первопорядковые кванторы предикатами второго порядка (предикатами одноместных предикатов), которые сообщают, является ли данный предикат пустым или непустым, допускающим исключения или нет и т.д. Здесь игнорируется тот факт, что кванторы могут быть приписаны к сложным предикатам или простым более чем одноместным. В терминах теоретико-игровой семантики вопрос здесь в том, является ли наша семантическая игра игрой с полной информацией. Позиция Фреге содержит утвердительный ответ, однако такой ответ не учитывал бы различие между дескриптивной и дедуктивной функциями логики.
Когда мы говорим о логике первого порядка, что она – кванторная, то этим сказано еще не все: логика первого порядка не есть логика кванторов, которые берутся сами по себе; это – логика зависимых кванторов. Зависимость иллюстрируется такими предложениями, как
(1) (х(уS[х, у],
где значение
(х(у
(2) S[х, у, z, u]
(z(u
Смысл этой записи состоит в том, что
(2') (
где выбор
Однако для вывода одного квантора из области действия другого более удобно использовать линейную символику. Например, (2) может быть записано, как
(3) (х(z ((у / (z) ((u / (х) S[х, у, z, u],
где / – отношение независимости.
Систематическое использование линейной символики (отношения независимости, его обращения и соответствующих истинностных предикатов) порождает то, что Хинтикка называет «независимо- дружественной» или «допускающей независимость» (independence-friendly – IF) логикой первого порядка. Это сильное расширение обычной первопорядковой логики, позволяющее независимость там, где принятая запись Фреге—Рассела запрещает ее.
По мнению Хинтикки, IF-логика более адекватна в роли подлинно базисной или элементарной логики, чем классическая первопорядковая, поскольку IF-логика не привлекает идей, которые бы уже не предполагались обычной первопорядковой логикой. Единственное явное новшество, которое следует уяснить для понимания IF-логики первого порядка – это идея кванторной независимости. Но понять независимость – это значит понять зависимость, что необходимо для понимания обычной первопорядковой логики. При этом среди особенностей первопорядковых языков для IF-логики есть тот факт, что если включить в такой язык определенные средства говорить в нем самом о его синтаксисе, то можно дать полное определение истины для этого языка в нем самом. Этот результат представляет проблему определимости истины в новом свете и лишает негативный результат Тарского его философского значения. Он показывает, что предпосылки теоремы Тарского столь ограничительны, что она не применима даже к самым основным логическим языкам, которые только можно вообразить.
Определимость истины в IF-языках первого порядка есть фактически доказательство того, что тезис о невыразимости неверен и что в действительности можно обсуждать семантику языка в нем самом. Результаты, подобные тем, что получил Тарский, фактически составляют твердое ядро любого рационального основания для общего тезиса о невыразимости, но более тщательный анализ ситуации ведет к заключению, диаметрально противоположному тому, что, как обычно считают, следует из результатов Тарского. Все философское значение теорем о неполноте и неопределимости следует, по мнению Хинтикки, переоценить, поскольку он показал, что результаты Тарского не имеют тех негативных философских следствий, которые им первоначально приписывали и которые у них обычно подразумевают.
В итоге, с учетом аргументов Филда и Хинтикки, попытка выполнения Тарским требования онтологической нейтральности может вызвать следующие комментарии. Концепция Тарского не решает вопрос о природе истинности и даже, по сути, не ставит такой задачи: она лишь показывает, как от утверждений о реальности мы можем перейти к утверждениям об истинностных значениях предложений, при каких условиях мы можем это сделать – а важнейшим среди этих условий является собственно
Часто утверждается, что концепция Тарского представляет дефляционную концепцию истинности296, показывая, как могут быть эквивалентны предложение языка и предложение, приписывающее этому предложению истинностное значение. Однако Тарский устанавливает эту эквивалентность через понятие имплицированности предложения об истинности предложении в утверждении самого оцениваемого предложения – что не очевидно, поскольку эту связь импликации не следует принимать как нечто само собой разумеющееся: в этом случае тезис (устанавливающий эквивалентность между двумя видами предложений) окажется предпосылкой, как это у Тарского и происходит. По-видимому, более обоснованным является мнение Керкэма, приписывающего Тарскому онтологический наивный реализм297: по его мнению, возражения Тарского против определения его концепции как реалистической (параграфы 18 и 19 статьи «Семантическая