описывается функцией Эйри, то он будет распространяться в свободном пространстве по кривой, причем сохраняя свою форму. Но об этом экзотическом решении вскоре благополучно забыли. И лишь недавно ученые обнаружили, что луч Эйри можно получить из обычного лазерного луча, распределение интенсивности которого обычно описывается хорошо известной функцией Гаусса. Для этого сантиметровый лазерный луч направили на оптический пространственный модулятор - похожее на жидкокристаллический экран устройство размером с часы, которое позволяет управлять фазой света, отраженного от каждого пиксела. Запрограммировав необходимый сдвиг фаз, ученые получили луч, который, пролетев 35 сантиметров, отклонился в сторону на миллиметр, практически не изменив формы. Этот луч асимметричен. Он имеет центральное пятно и хвост из затухающих максимумов с одной из сторон, причем отклоняется в противоположную от хвоста сторону. Затем ученые получили луч Эйри с двумя хвостами, направленными влево и вниз (на рисунке справа).
Разумеется, чудес не бывает, и свет в луче Эйри, как ему и положено, распространяется по прямой. Наблюдаемая 'кривая' картина возникает в результате хитрой интерференции волн, отраженных от полумиллиона тщательно сфазированных пикселов модулятора. И этот тонкий эффект ученые надеются использовать для манипулирования частицами в оптических ловушках.
Но самые интересные приложения могут возникнуть, если подобные импульсы Эйри удастся реализовать в оптических волокнах. Есть надежда, что они будут распространяться без дисперсии, то есть почти не меняя своей формы, а это значит, что дальность передачи информации по волокну значительно возрастет. ГА
Новый эксперимент, способный проверить закон Кулона с точностью двадцать два десятичных знака, затеяли физики из Бригхэмского университета в Прово, штат Юта. Эксперимент позволит существенно уточнить предыдущие измерения и выведет на чистую воду целую толпу теоретиков, потрясающих основы и смущающих коллег всевозможными нестандартными гипотезами и моделями.
Закон Кулона, который гласит, что одинаковые заряды отталкиваются, а заряды разного знака притягиваются с силой, обратно пропорциональной квадрату расстояния между зарядами, - один из самых фундаментальных и 'всеми уважаемых' законов природы. Но и с ним далеко не все ясно, поскольку, например, если расстояние между частицами стремится к нулю, то сила обращается в бесконечность. Но бесконечностей в природе не бывает, и эта сингулярность сильно портит красоту многих теорий. А там, где что-то не клеится, сразу возникает масса других теорий, которые, к сожалению, чаще всего только еще сильнее всё запутывают.
Ревнители основ отбиваются от новых гениев экспериментом. Последний эксперимент, подтвердивший закон Кулона с точностью до семнадцатого знака, был проведен в 1983 году. И с тех пор поднакопилось изрядное количество теорий, которые предсказывают более слабые отклонения от закона обратных квадратов. В новом эксперименте ученые обещают увеличить точность проверки на пять порядков. И дело тут не только в законе Кулона. Это, в частности, позволит установить, что масса покоя фотона, которая в стандартной теории равна нулю, по крайней мере меньше, чем 10–49 г, что в сто раз точнее предыдущих проверок.
Для эксперимента, в основе которого лежит новая техника интерферометрии волн заряженных частиц, достаточно сравнительно небольшой установки. В ней пучок атомов направляют вдоль трехметровой металлической трубы, а специальный лазер отрывает от каждого