применен, например, к ситуации соперничества политических партий за власть в современной демократической стране. Поэтому и действие «параметра решительности» отнюдь не ограничивается ситуацией вооруженного противоборства двух индивидов или групп. Так, например, в современных демократиях такие институты, как права человека и разделение властей сокращают этот параметр.

Рисунок 5.1. Функция успеха в соперничестве9*

1 0,9-

+ F2 = 25

0,7-

0.6-

m = 0,5

05-

I

0.4-

f

m = 1

0.3-

,-

0,2-

0.1-

25 3C 35 40 46

98 Hirshleifer, Jack (1995), Anarchy and its Breakdown, 103 Journal of Political Economy, 32.

Из предшествующих выкладок получаем:

(f2R2)m

И, наконец, приходим к условиям равновесия между выбираемыми сторонами уровнями интенсивности военных усилий и долями ресурсов, которые контролирует каждая из сторон:

гт п

I

— J2 К2

[()

h)

Из последнего уравнения следует, что при стремлении m к единице, pi/p2 —> 0, если fi > f2, и pi/p2—> оо, если fi< f2 (см. рис. 5.2).

На этом рисунке по горизонтальной оси отложена относительная интенсивность военных усилий (fi/f2), а по вертикальной — пропорция успеха (pi/p2).

Из всего предшествующего изложения вытекает первое условие, при соблюдении которого анархическая система будет относительно устойчивой, а именно, для динамической стабильности системы необходимо, чтобы «параметр решительности» был меньше 1. Проиллюстрируем это числовым примером. Положим R = 100, f = 0,1, f2 = 0,2, m = 2/3. Тогда:

/(l-m)

.99

Ri = 20, R2 = 80. Рисунок 5.2. Интенсивность военных усилий и пропорция успеха

m = 0.75

m = 0.9

в

7 6–5 4

1-

0–2 0.4 0.6 0.6

1.2 1.4 1.6 1.8

Если первоначальное распределение ресурсов иное, то каждое последующее взаимодействие между противоборствующими сторонами будет асимптотически приближать распределение ресурсов к равновесному уровню. Например, в рассмотренном примере, при сохранении всех остальных параметров, если первоначально ресурсы распределены в пропорции 3/2 (Ri° = 60, R2 = 40), то конфликтное взаимодействие между сторонами в первом периоде приведет к

Ibid., 34.

новому распределению ресурсов: R/ = 45,2, R2' = 54,8. Продолжение конфликта во втором периоде установит новые параметры распределения ресурсов: R]2 = 35,7, R22 = 64,3. И так далее.

Если же параметр m > 1, например, m = 2, распределение ресурсов не будет стремиться к равновесному состоянию. Так, в рассматриваемом примере, при Ri° = 60, R20 = 40 и m = 2, Ri1 = 36, R21 = 64; Ri2 = 7,3, R22 = 92,7, и так далее. То есть, система удаляется от равновесия с каждым следующим взаимодействием.

Другим необходимым условием стабильности анархической системы будет, естественно, наличие у каждой из соперничающих сторон в динамическом равновесии по меньшей мере минимального уровня доходов, у, обеспечивающего выживание каждого из конкурентов (Yj > у, i=l,2).

Заметим также, что эти два условия являются не достаточными, но только необходимыми условиями устойчивости анархической системы.

Далее, предположим, что каждая из конкурирующих сторон пытается максимизировать свой собственный доход, выбирая оптимальную интенсивность своих военных усилий и полагая заданной интенсивность усилий конкурента. Очевидно, что в этом случае мы имеем дело с классической дуополией Курно. Целевые функции соперничающих индивидов или групп будут выглядеть как:

flJi +/2

Где i = 1,2; aiei + Ъ& = 1; М = m/(l-m).

Решая это уравнение для каждого из соперников, получаем соответствующие кривые реакции (RQ и RC2):

f' — м

/7 м

Если же принять достаточно реалистичную для условий анархии предпосылку, что и производственные и военные технологии обоих субъектов одинаково эффективны, мы получим условие равновесия при симметричном двустороннем конфликте:

Мт

Как показывает это уравнение, интенсивность военных усилий сторон при симметричном конфликте обратно пропорциональна издержкам конверсии единицы ресурсов в военные усилия, и прямо пропорциональна «параметру решительности», отражающему эффективность наступательных военных усилий, относительно эффективности оборонительных усилий.

Симметричное решение при b = 1 отражено на рис. 5.3.

Здесь по горизонтальной оси отложена интенсивность военных усилий первого индивида или группы, а по вертикальной — второго индивида или группы. Как видно на этом графике, равновесный объем военных усилий увеличивается с ростом т.

Так как, при симметричном конфликте pi = р2 = 1/2, максимальный для каждой из сторон доход будет представлен следующим уравнением:

Иначе говоря, доход каждой из сторон растет с увеличением совокупного объема доступных ресурсов R и ростом параметра производительности h; и падает с ростом «параметра решительности» m и издержек конверсии единицы ресурсов в производственные усилия а.

Следующим шагом будет увеличение числа индивидов или групп, действующих в анархической системе до N. В этом случае целевая функция первого из этих конкурентов будет выглядеть как:

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату