или яйца всего живого на Земле. План строения организма, цвет каждого его волосика и чешуйки, форма каждого лепестка и каждое инстинктивное движение психики закодированы тайнописью химических радикалов в молекулах, несущих наследственную информацию.

И весь этот план в четырех измерениях запрограммирован в запоминающем, так сказать, устройстве всего лишь одной клетки — оплодотворенного яйца.

Чтобы уместиться в микроскопической частичке живого вещества, гены, носители наследственной информации, должны быть максимально малы. Но в то же время и достаточно велики: иначе они не смогут противостоять тепловым ударам атомов, потеряют свою удивительную стабильность, и здание жизни, скрепленное, как цементом, наследственностью, рассыплется.

Мы стоим перед чудом: вы видели только что, как многообразна природа, как трудно описать даже и многими словами лишь основные типы живых конструкций. Но у каждого типа сотни тысяч более частных вариантов — видов и разновидностей. И этих разновидностей больше миллиона!

А ведь все качественные и количественные характеристики этих вариантов, то есть все свойства видов, больше того — каждого индивидуума каждого вида, закреплены в наследственности и стойко передаются из поколения в поколение.

Мы знаем также, что частичка живого вещества, несущая в себе сверхогромную наследственную информацию и условно именуемая геном, сложена всего лишь из нескольких десятков тысяч атомов! В человеке во всех клеточках его тела генов не больше, чем молекул в кубическом дюйме воздуха!

В неживом веществе поведение любой группы атомов беспорядочно и случайно и только в массе подчиняется статистическим законам. А тут перед нами очень небольшое с точки зрения статистики число атомов.

И в то же время их ассоциация в высшей степени упорядочена и стабильна. Наследственную информацию, записанную языком химии в структурах нуклеиновых кислот, они проносят через тысячелетия. Это и удивительно.

«Кожа» клетки

Итак, все живое на Земле, и растения и животные, сложено из клеток, как молекулы из атомов. Мало кого в наши дни это утверждение удивит, мало для кого оно будет новым. Но открытие этой, теперь можно сказать, прописной истины сделано сравнительно недавно и совершенно случайно.

Имя человека, который первым из людей увидел клетку, — Роберт Гук. Он был ассистентом известного физика Бойля. Случилось это в Англии в 1667 году. В то время, как известно, натуралисты и ненатуралисты, которые могли позволить себе подобное развлечение, увлекались лупами и микроскопами. Покупали или делали их сами и смотрели в увеличительные стекла на все, что попадалось под руку.

Роберт Гук сделал микроскоп сам. И рассматривал в него разные вещи, которые открывали перед ним свои невидимые для невооруженного глаза свойства. Позднее он рассказал об этом в книге «Микрография». Однажды ему попалась в руки пробка. Гук нарезал ее на тонкие ломтики и положил под объектив.

И увидел… стройные ряды ячеек, или клеток, как назвал их он. Роберт Гук, как смог, зарисовал клетки пробкового дуба. Но открытие Гука и его рисунки не произвели большого впечатления на современников.

Прошло еще 200 лет, и только в 1839 году была создана, так сказать, общая теория клеточного строения. Ботаник Маттиас Шлейден и зоолог Теодор Шванн независимо друг от друга доказали, что из клеток сложена не только кора пробкового дуба, но и все вообще растительные и животные ткани, все живое на нашей планете.

Размеры клеток обычно очень малы. В капле нашей крови плавает около 5 миллионов красных кровяных шариков, каждый из которых клетка. В длину они около 7–8 микрон. А микрон — тысячная часть миллиметра.

Бактерии, каждая из которых тоже клетка, — еще меньше: в капле воды 40 миллионов бактерий живут так же просторно, как рыбы в пруду.

Но бывают клетки и очень большие. Например, куриное яйцо, вернее — его желток. Это тоже клетка. А яйцо страуса? Или эпиорниса, вымершей гигантской птицы Мадагаскара? Его скорлупа вмещала ведро воды.

Клетки растений и животных в общем похожи. Разница только в том, что у растений оболочки клеток сложены из клетчатки — многомолекулярного сахара. А у животных в основном из липидов — жироподобных веществ.

Молекулы липидов лежат, по-видимому, двумя слоями. Параллельно друг другу, но перпендикулярно плоскости мембраны, клеточной оболочки. Снаружи и изнутри липидная основа покрыта белком, образующим прочные и эластичные сплетения.

Помимо своего чисто механического назначения, клеточная оболочка играет роль очень важного в жизни клетки селективного органа. Она должна пропускать внутрь клетки (и из нее) одни вещества и не пропускать другие.

Какие силы обеспечивают проникновение избранных молекул в клетку?

Прежде всего, конечно, силы диффузии. Живые клетки почти всегда находятся в жидкой среде: в водном растворе разной концентрации и состава. Либо это морская или пресная вода, либо тканевый сок растения или межклеточная жидкость животного. Частицы веществ, растворенных в воде, под действием тепловой энергии стремятся равномерно распределиться в пространстве. Это известно из физики. В соответствии с тем же физическим законом вещества, растворенные в среде, окружающей клетку, проникают через ее оболочку. Если их концентрация внутри клетки мала, а в среде велика, они идут внутрь клетки. Если наоборот — пробираются наружу.

Для некоторых веществ клеточная мембрана может быть непроницаемой. Тогда, если их концентрация в клетке выше, чем вне ее, в нее начнет проникать вода. Клетка разбухнет. Но вода может и уйти из клетки, когда концентрация веществ, которые ее оболочка не пропускает, выше в окружающей среде. Диффузия растворителя через полупроницаемую мембрану называется осмосом. Диализ — это диффузия молекул растворенного вещества через ту же мембрану.

Обе эти формы диффузии — и осмос и диализ — физическая основа, от которой зависит жизнь клетки.

Вторая сила, помогающая переносу веществ через клеточные барьеры, — электрическая. Многие растворенные вещества диссоциированы на ионы. А клеточные мембраны обычно сохраняют разность потенциалов на своих внутренних и наружных поверхностях. Разность потенциалов побуждает соответствующие ионы мигрировать внутрь клетки.

Наконец, третья сила, принимающая участие в пассивном переносе веществ через мембрану, — это так называемое втягивание. В том случае, когда мембрана пористая, раствор может протекать через нее по порам, как по капиллярам.

Однако этими тремя методами пассивного проникновения поступление веществ в клетку не ограничивается. Цитологи часто наблюдали, как некоторые вещества устремлялись в клетку, так сказать, против воли стихий, описанных выше. Они направлялись в сторону не понижения, а повышения градиентов сил, обеспечивающих пассивный перенос. Значит, при этом совершалась физическая работа. Энергию для нее поставляет клетка.

Примером веществ, концентрация которых в клетке противоречит законам пассивного переноса, могут служить калий и натрий. Во многих клетках калия значительно больше, а натрия меньше, чем в окружающей среде. В эритроцитах калия в двадцать раз больше, а натрия — в двадцать раз меньше, чем в плазме крови. Предоставленные самим себе, и калий и натрий распределились бы равномерно и в плазме и в эритроцитах. А раз этого не происходит, значит в кровяных клетках действует какой-то механизм, который постоянно «накачивает» в клетку ионы калия и «выкачивает» из нее ионы натрия.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату