(Dodd, Dodd, 1985). Являясь паразитическими животными или падальщиками, круглоротые не нуждаются в сложной координации движений, что отражает строение их мозжечка (см. рис. II- 22, а).

211

Однако размеры и форма мозжечка у первичноводных позвоночных могут изменяться не только в связи с пелагическим или относительно оседлым образом жизни. Поскольку мозжечок является центром анализа соматической чувствительности, он принимает самое активное участие в обработке электрорецепторных сигналов. Электрорецепцией пользуются очень многие первичноводные позвоночные. На сегодняшний день известно, что 70 видов рыб обладают развитыми электрорецепторами, а около 500 видов могут генерировать электрические разряды различной мощности. Примерно 20 видов способны как генерировать, так и рецептировать электрические поля. Наиболее изучена эта способность у гимнарха (Gymnarchus niloticus), рецептирующего электромагнитное поле, создаваемое им самим. При попадании в его поле объектов различной электропроводности гимнарх может определить направление их движения, размер и скорость. Электрорецепция используется для ухаживания друг за другом особей различного пола и подавления электромагнитных полей конкурирующих особей или других видов. Кроме гимнарха, аналогичные способности генерировать и воспринимать собственные сигналы известны у других костистых рыб, акул и скатов.

Электромагнитные сигналы первичноводные позвоночные воспринимают при помощи рецепторов двух основных типов: ампульных (ампулы Лоренцини) и клубочковых. У некоторых видов присутствуют рецепторы обоих типов, но у большинства только одного. Ампульные электрорецепторы приспособлены для восприятия медленно изменяющихся электрических полей, а клубочковые реагируют на быстрые изменения, поэтому у активно плавающих рыб, обитающих в непрозрачной воде, более развиты клубочки, а у хищников в прозрачной воде — ампульные рецепторы. Если основной системой афферентации становится электрорецепция собственного электромагнитного поля или внешних электрических полей, то мозжечок начинает выполнять роль сенсорного мозгового центра. У всех рыб, обладающих электрорецепцией, мозжечок развит чрезвычайно хорошо (см. рис. II-22, в). Зачастую полушария мозжечка так велики, что закрывают с дорсальной поверхности весь мозг.

Таким образом, структурные отделы головного мозга первичноводных позвоночных представляют собой своеобразные маркёры морфофункциональной адаптации вида к определённым условиям обитания. Анализ организации нервной системы первичноводных позвоночных даёт объективную информацию о развитии систем афферентации, способах принятия решений и ведущих мотивационных центрах головного мозга. Однако не менее интересен эволюционный путь возникновения

212

столь компактной и эффективной системы управления поведением. Палеонтологических свидетельств возникновения современной конструкции мозга первичноводных позвоночных крайне мало. Даже самые древние находки содержат в основном информацию об уже сложившемся современном типе организации головного и спинного мозга. Реконструируя становление нервной системы первичноводных позвоночных, приходится опираться на архаические черты строения мозга современных видов.

По-видимому, появление древних хордовых не сразу привело к заметным изменениям в биологии водной среды. Судя по всему, первые хордовые были относительно небольшими животными, размером от нескольких сантиметров до полуметра. Они явно не могли составить серьёзной конкуренции процветавшим водным беспозвоночным, которые зачастую были намного больше, чем молодая группа хордовых. По размерам древние позвоночные явно проигрывали беспозвоночным и не могли на равных конкурировать с ними. Нервная система не давала особых преимуществ этой новой группе, скорее наоборот. Небольшая и хорошо детерминированная нервная система с набором эффективных поведенческих программ давала беспозвоночным заметные преимущества в конкуренции с древними хордовыми. Нервная система древних позвоночных обладала только одним положительным качеством — способностью к почти неограниченному увеличению своих размеров. Однако это преимущество было реализовано далеко не сразу. На первом этапе хордовые решали проблему конкуренции с беспозвоночными при помощи выбора среды обитания, становления строения мозга и скелета.

§ 28. Возникновение отделов головного мозга Ранний период истории возникновения предков позвоночных, до формирования хорошо структурированного скелета, довольно туманен. Если допустить, что предковые формы хордовых были мягкотелыми существами размером около 10-15 см, то возникнет существенная проблема как с биотопом, так и с биологическим смыслом появления таких существ. Первым условием возникновения хордовых должна была стать некая очень выгодная среда. В ней должно быть много пищи, ещё не освоенной другими организмами. Эта среда должна давать возможность эффективно размножаться и защищать от потенциальных хищников. Вполне возможно, что первые позвоночные возникли в мелководье билатерали. В этих местах крупные морские беспозвоночные были не так опасны, как в воде, а размеры наземных беспозвоночных хищников были намного меньше, чем в водной среде, что позволяло выживать даже мягкотелым предкам позвоночных (Janvier, 1981).

213

Допуская появление первых хордовых на мелководной билатерали, попробуем представить себе ключевые этапы формирования основных отделов головного мозга. Головной мозг древних хордовых сформировался из 3-4 слившихся ростральных ганглиев нервной цепочки беспозвоночных (см. рис. II-15; II-16). Ганглиозная структура нервной цепочки беспозвоночных предполагает сохранение следов рострокаудальной сегментации, которая отразилась в организации первичных нейральных отделов (рис. II-23, а). В наиболее примитивном состоянии дорсальная нервная трубка состояла в головной части из трёх сенсомоторных центров. Самой каудальной и самой древней частью были два сенсомоторных ганглия на границе головного и спинного мозга. Они составляли основу координированной эффекторной активности всех моторных нейронов в древней нервной системе. Эта функция была унаследована от беспозвоночных, как и принципы морфологической организации.

Ретикулярно-нейропильная структура продолговатого и заднего мозга современных первичноводных позвоночных очень близка по принципам организации к моторным ганглиозным центрам современных турбеллярий и полихет. Ростральнее моторных центров расположен видоизменённый ганглий, связанный со зрительной системой. Парные глаза также стали наследством беспозвоночных предков. Маловероятно, что они возникли вторично, хотя инвертированное строение сетчатки и её образование из нервной трубки не исключают и такого варианта развития событий. Спереди от зрительных центров первоначально располагался ещё один остаток самого рострального ганглия беспозвоночных. Это нейроморфологическое наследство нейрогемального (гормонального) органа. По-видимому, сохранились ганглий и связанный с ним орган гормональной регуляции поведения. Нейрогемальный орган интегрировался в ганглиозную структуру этого участка мозга.

Однако у самого рострального участка нервной трубки возникли и дополнительные функции. В первую очередь это механорецепторный аппарат передней части тела. Эти функции выполнял

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату