Schram, 1991). Особо развиты у простейших органоиды движения. Небольшой размер организма позволяет эффективно пользоваться приспособлениями ультраструктурного размера для перемещения, питания или агрессии. Корненожки и амёбы образуют мембранные образования, называемые ложноножками, или псевдоподиями. Они 19
позволяют многим простейшим двигаться и захватывать пищу. Псевдоподии крайне разнообразны. Выделяют широкие, цилиндрические и округлые на конце — лобоподии, длинные и нитевидные — филопо-дии, сетчатые, разветвляющиеся и анастомозирующие — ретикуло-подии. Существуют и более эффективные в движении псевдоподии со стержнем внутри — аксоподии. Они способны не только вытягиваться и втягиваться, но и сокращаться (McConnel, 1966). Для движения простейшие используют довольно крупные жгутики или многочисленные мелкие реснички, которые позволяют перемещаться с невероятной скоростью. У простейших существуют аналоги мышечных волокон — мионемы, которые позволяют изменять форму тела или совершать сложные движения. Сжатие стебелька у сувойки представляет собой результат мышечного сокращения.
Следовательно, простейшие организмы способны к автономному питанию, размножению, движению и адаптации к изменяющимся условиям внешней среды. Наличие эффективных органов движения является принципиальным отличием простейших от растений. Если есть активное движение, значит, можно наблюдать и быстрые поведенческие реакции. Их существование свидетельствует о механизмах системного управления простейших, которые построены по аналогии с нервной системой, тем более что при отсутствии нервной системы они проявляют прекрасную обучаемость.
С момента признания существования простейших в 40-х годах XIX в. началось изучение их поведения. Открытие мира простейших привело к известному буму в наблюдениях, а любители «наливок» сформировали целое направление. «Наливочниками» называли исследователей, разводивших микроорганизмы в настоях или наливках различного состава. Название возникло от латинского
Сложность поведения простейших поразила первых исследователей и привела к переоценке их психических способностей. Так, В. Кюне в 1859 г. считал колокол сувойки головой. При отрезании этой «головы» стебелёк сувойки переставал сокращаться, что позволило заподозрить у этих животных сложную психику. В то время считалось, что сувойки способны к ощущениям, распознаванию, обладают сознанием и совершают волевые поступки. Работы тех лет полны интересными свидетельствами личной жизни одноклеточных организмов. Психические
переживания простейших описывались как «приятные ощущения», а питание амёб происходило «с чувством удовольствия». Авторы без тени сомнения наделяли простейших собственными гастрономическими переживаниями и ощущениями. Понятно, что эти смелые фантазии возникли на пике увлечения изучением поведения простейших и связаны с быстрыми реакциями на различные физико- химические воздействия.
Эти примеры лишний раз подчёркивают, что у любого живого организма можно увидеть признаки сложного поведения. Для этого достаточно рецептивного аппарата растений в сочетании с быстрым ответом любых эффекторных систем. Все аналогичные события происходят и у растений, но скорость процессов так отличается от темпов нашей жизни, что быстрые, с позиций растений, ответы на внешние воздействия мы не замечаем.
Тем не менее сложность адаптивных реакций одноклеточных сво-бодноживущих организмов заслуживает дополнительного внимания. Проведено несколько блестящих экспериментов, которые демонстрируют реальную способность простейших к поведенческой адаптивности и создают видимость способности к примитивному обучению.
Свободноживущие амёбы проявляют весьма разнообразные стратегии захвата пищи, реагируют на свет и колебания воды. Если рассмотреть при помощи микроскопа поведение амёбы, то возникает уверенность в отнюдь не физико-химической природе питания простейших. Амёба, столкнувшись с большим или незакреплённым пищевым фрагментом, демонстрирует разнообразные приёмы его захвата. Сначала она использует одиночную псевдоподию для охватывания пищевого фрагмента. Если фрагмент ускользает, то начинается его охватывание с различных сторон двумя, а иногда и тремя псевдоподия-ми. Каждая неудача в захвате пищи вызывает применение нового приёма, разнообразие которых весьма велико. Этот пример показывает, что амёбы корректируют своё поведение в зависимости от результата.
Прикреплённые инфузории ещё более удобны для наблюдений и элементарных поведенческих экспериментов. Широко известны и многократно проверены результаты опытов с трубачом
отрываются от поверхности и уплывают в другое место. Важна не сама цепь разнообразных адаптивных реакций, а обнаруженная «память» трубачей при прерывании воздействия. Если трубач не уплыл, а воздействие прекращено, то животное ненадолго запоминает ситуацию. При возобновлении посыпания кармином трубач уже не демонстрирует все стадии рецептивной адаптации. Он сразу начинает с прерванной стадии и обычно уплывает. Следовательно, инфузории обладают формой донервной памяти, которая сохраняется несколько десятков минут.
В начале XX в. в США были придуманы изящнейшие эксперименты по индивидуальному обучению инфузорий
Казалось бы, из этих экспериментов следуют два вывода: инфузории могут обучаться и запоминать выученные движения. Спустя почти 60 лет после первых опытов с поворотом и выходом из трубки началась новая серия опытов по обучению инфузорий (Huber, Rucker, McDiarmid, 1974). Четыре независимые группы экспериментаторов убедились, что тренировка парамеций является артефактом, а не реальным научением. В качестве демонстрации памяти часто приводится