высокой половой конкуренции или явном, но малодоступном пищевом ресурсе. Они оказываются решающим резервом при полной исчерпанности инстинктивно-ассоциативных наборов видоспецифических форм поведения. Если индивидуализированная форма поведения даёт заметный выигрыш в доступе к пище, то она и закрепляется последующими репродуктивными преимуществами, вероятность сохранения количественных особенностей мозга данной особи возрастает. По-видимому, именно этот механизм лежит в основе масштабных приспособительных изменений головного мозга большинства первичноводных позвоночных. В зависимости от типа питания и развития органов чувств их мозг дифференциально увеличивается в размерах (см. § 27). Этот путь в эволюции нервной системы эффективен для решения частных адаптивных проблем в рамках существующей конст-

353

рукции нервной системы. Крупные эволюционные события, приводящие к смене среды обитания и возникновению новых систематических таксонов высоких порядков, требуют качественных изменений в нервной системе.

Появление в нервной системе качественно новых структур требует продолжительного времени и совершенно особых условий. Эти условия должны отличаться от традиционной среды обитания и обладать непреодолимой притягательностью для позвоночных. Гарантиями такой привлекательности остаются обильная пища и успешное размножение. Если столь биологически выгодная среда долго сохраняется, то у животных появляется шанс обретения качественно новой нейроморфологической структуры.

Таких экологических условий в истории позвоночных возникало немного, и все они отмечены появлением животных с качественно новыми структурами нервной системы. Первым событием такого рода стало возникновение хордовых. Как описано выше, появление хордовых было довольно случайным событием, а не фатальной эволюционной закономерностью (см. § 26). Группа похожих на турбеллярий небольших плоских червей продолжала обитать на мелководьях, богатых пищей. Будучи фильтраторами и ведя пассивный образ жизни, эти плоские червеобразные существа пытались закрепиться на максимально выгодных пищевых территориях. Для этого они погрузили заднюю часть своего тела в придонные отложения. Такое заякоривание широко распространено среди современных придонных беспозвоночных. Отдалёнными последствиями этих несложных адаптивных действий древних червей стали дорсальный нервный тяж и мышечная хорда, предотвращающая его деформацию. Сутью качественных изменений двух- или четырёхцепочечной нервной системы червеобразных предков хордовых стали несколько последовательных событий. При двухцепочечном варианте произошёл 90-градусный поворот червя на одну из боковых поверхностей тела. При четырёхцепочечной схеме строения нервной системы отмечено слияние парных дорсальных и вентральных нервных цепочек. В обоих случаях качественная перестройка нервной системы завершилась рострокаудальным слиянием сегментарных ганглиев дорсальной нервной цепочки с последующим образованием центрального желудочка. Параллельно произошло разделение узлов вентральной нервной цепочки до уровня соматических ганглиев (см. § 26). Они стали основой для иннервации внутренних органов. Хордовые не появились бы без специфической переходной среды. Небольшая глубина воды, обилие пищи и подходящие для размножения

354

условия гарантировали процветание любых придонных фильтраторов. Среди множества вариантов адаптации к столь благоприятной среде возникновение морфотипа хордовых было только одним из успешных вариантов. В этой ситуации решающую роль играла богатая пищей среда, которая стала стимулом для морфологических изменений многих видов. Дальнейшая эволюция хордовых протекала в более разнообразных условиях и привела к возникновению всего многообразия первичноводных позвоночных (см. § 29).

Вторым принципиальным качественным изменениям мозг подвергся после выхода позвоночных на сушу. Это событие привело к крупным морфологическим перестройкам как в нервной системе, так и других органах. Сформировались конечности, лёгочное дыхание, специализированные покровы и ряд других признаков, позволивших архаичным тетраподам перейти к наземному существованию. Столь обширные морфофункциональные перестройки анализаторного и эффекторного аппаратов нервной системы не могли произойти за короткий промежуток времени и вне особой переходной среды. Они были особенно необходимы для качественных изменений в нервной системе, поскольку в количественном отношении мозг амфибий явно проигрывает специализированным первичноводным животным. При выходе на сушу в нервной системе древних амфибий возникли вомероназальная обонятельная система, контроль за дыханием и комплекс стволовых центров управления конечностями. Изменениям подверглась зрительная, слуховая и вестибулярная системы. Переходной экосистемой между водной и наземной средой обитания могли быть своеобразные почвенные лабиринты или карбоновые лесные завалы (см. § 31). В такой переходной среде можно было долго использовать как плавательные движения, так и опору на плавники. При высокой влажности лабиринтов одновременно функционировали кожное дыхание, жабры и зачатки лёгких. Развитие водно-воздушных органов чувств и моторных систем в переходной среде было оправдано биологическими преимуществами, которые давало освоение богатых пищей и хорошо защищённых территорий (см. § 33). По- видимому, и почвенные лабиринты, и карбоновые завалы из стволов деревьев создали уникальную переходную среду для постепенной эволюции нервной системы древних амфибий. Только при длительном развитии морфологических изменений могли бы появиться спинномозговые центры и красное ядро для управления конечностями, вомероназальный орган и дополнительная обонятельная луковица, вторичные слуховые и вестибулярные центры.

355

Третьим историческим периодом развития нервной системы можно считать формирование мозга архаичных рептилий. Рептилийный период стал самым плодотворным в истории позвоночных. Рептилии заложили основные принципы структурной эволюции мозга амниот. У рептилий в нервной системе впервые сформировался ассоциативный отдел. Он возник на базе среднего мозга и оказался настолько успешным приобретением, что рептилии на миллионы лет стали самой доминирующей группой позвоночных. Ассоциативный средне-мозговой центр никогда не сформировался бы без серьёзной биологической необходимости. Она возникла ещё в начале эволюции рептилий как способ адаптации к агрессивной среде. Архаичным рептилиям требовалось постоянно сравнивать информацию, приходящую от различных органов чувств, и принимать сложные решения. Решения были вызваны постоянной адаптацией поведения к быстро меняющейся ситуации. Этими свойствами мозг первичноводных позвоночных и амфибий не обладал. Они выбирали одну из инстинктивных форм поведения по совершенно другим принципам. Выбор амфибий был построен на конкуренции между мозговыми центрами представительства анализаторов (рис. III-28). Простое сравнение уровня возбуждений было достаточным условием для реализации одной из инстинктивных программ. Рептилии впервые стали обладателями аналитического устройства совершенно нового типа (см. рис. III-28). Оно действовало по принципу сравнения информации, поступающей от каждого органа чувств. Решающую роль стало играть содержание анализаторного сигнала, а не сам факт возбуждения (см. § 37). Собственно говоря, у рептилий появились основы ассоциативного принципа поиска решений. Понятно, что мы видим самые зачаточные признаки этого губительного свойства мозга, но они возникли именно у рептилий. История рептилий, наверное, была намного богаче неврологическими экспериментами, чем мы можем себе представить. Достаточно упоминания о ещё одном историческом приобретении рептилий — кортикальных структурах переднего мозга (см. § 39). Половая конкуренция в сочетании с невероятным развитием обоняния и вомероназальной системы рептилий стала основой для появления кортикальных структур. Кортикальные структуры переднего мозга сформировались на основе нового центра, обеспечивающего интеграцию

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату