6. Синусоида описывает широкий круг физических явлений, включая волновое движение и периодические колебания.

Эта глубокая связь между е^x и sin x полностью выявляется в теории комплексных чисел, где обычная система чисел обобщается и включает квадратные корни из отрицательных чисел. Оказывается, что когда x — квадратный корень из отрицательного числа, е^x становится смесью двух волн – синусоидальной и косинусоидальной. Теперь уже не приходится удивляться, что физические системы, поведение которых описывается экспонентой, способны проявлять и периодическое, “синусоидальное”, поведение. Примером такой системы может служить так называемый гармонический осциллятор, скажем, маятник или просто масса, прикрепленная к пружине. Если массу слегка отклонить от состояния равновесия, то она начнет колебаться взад-вперед в результате периодического воздействия пружины. Положение массы в зависимости от времени будет изменяться по синусоиде, изображенной на рис. 7. Такое движение массы определяется законом изменения силы натяжения пружины. Величина этой силы прямо пропорциональна смещению массы из положения равновесия, а направление таково, что она пытается вернуть массу в положение равновесия: если пружина растянута, то сила создает притяжение, если пружина сжата – отталкивание.

Предположим теперь, что сила, изменяющаяся по тому же закону, была бы направлена не к положению равновесия, а от него. Поведение системы в этом случае оказалось бы совершенно Другим. Отклонение массы от равновесия нарастало бы по экспоненте, масса разгонялась бы все быстрее в одном и том же направлении. С пружинами такое невозможно, а в других системах случается. Иногда система в одних условиях колеблется по синусоидальному закону, а в других срывается в экспоненциальный режим.

Умение находить с помощью математического анализа скрытые соотношения и симметрии, подобные, описанным выше, характеризует профессиональное мастерство физиков. Нередко более тонкие симметрии удается обнаружить, только коренным образом изменив математическое описание. Так произошло при переходе от птолемеевой космологии к ньютоновской механике, гораздо позднее – и с самой ньютоновской механикой.

В XIX в. законы Ньютона были математически полностью переформулированы французским физиком Жозефом Луи Лагранжем и ирландским физиком Уильямом Роуэном Гамильтоном. И тот и другой видоизменили математическое описание с тем, чтобы подчеркнуть простоту и изящество, заключенные в механике Ньютона. В работе Гамильтона, в частности, неожиданно оказался предвестник квантовой революции, которой предстояло опрокинуть всю классическую физику. Но до этого было еще далеко.

Основная проблема механики состоит в том, чтобы понять, описать и предсказать траектории (пути), по которым движутся материальные частицы под воздействием приложенных сил. Эти траектории, очевидно, имеют самый различный вид в зависимости от характера действующих сил. Задача о путях распространения в прозрачной среде световых лучей на первый взгляд кажется другой. Свет не подчиняется законам механики Ньютона, хотя хорошо известно, что при прохождении через среду с изменяющейся плотностью световые лучи искривляются. Например, нам кажется, что погруженная в пруд палка имеет излом в том месте, где входит в воду. Дело в том, что световые волны замедляются в плотных средах, и вторичные волны, исходящие из различных точек волнового фронта, встречая на своем пути участки среды с различной плотностью, образно говоря, “сбиваются с шага”: одни идут медленнее, другие быстрее. В большинстве случаев световой луч в конечном счете распространяется по пути, на котором от точки к точке затрачивается наименьшее время. Таким образом, поведение светового луча можно понять на основе теории волн, которые распространяются со скоростью, изменяющейся в зависимости от свойств среды, через которую они проходят.

Изменив математическую формулировку механики Ньютона, Гамильтон заметил, что наиболее сжатое выражение законов движения содержится в математическом соотношении, тождественном принципу минимального времени распространения световых волн. Грубо говоря, частицы стремятся переходить отточки к точке по наиболее легкому пути, т.е. с наименьшим сопротивлением, который в большинстве случаев оказывается и кратчайшим, т.е. требующим наименьших затрат времени. Тем самым было установлено, что материальные частицы и световые волны, несмотря на различие их характера и поведения, с математической точки зрения распространяются более или менее одинаковым образом.

Этот поразительный результат, полученный исключительно при попытке записать законы механики в новой математической форме, обнаруживает глубокую гармонию в природе, которая наводит на мысль, что в природе должны действовать и другие скрытые принципы. Взглянув ретроспективно, мы видим теперь, в чем состоят эти принципы. Тесная взаимосвязь между движением частиц и распространением световых волн указывает на то, что с материальными частицами могут связываться и некоторые волновые свойства. “Волны материи”, о которых мы упоминали в гл. 2 и 3, послужили отправным пунктом развития квантовой теории. Таким образом, математическая оптика Гамильтона, которая первоначально казалась лишь жонглированием математическими символами, предстает перед нами в новом свете – как провозвестник новой волновой теории материи.

Симметрия

Понятие симметрии хорошо знакомо и играет важную роль в повседневной жизни. Многим творениям человеческих рук умышленно придается симметричная форма как из эстетических, так и практических соображений. Мяч симметричен, так как выглядит одинаково, как бы его ни поворачивали вокруг центра. Круглая печная труба сохраняет свой внешний вид при более ограниченном наборе вращении – поворотах вокруг вертикальной оси, проходящей через центр поперечного сечения.

В природе симметрия также встречается в изобилии. Снежинка обладает удивительнейшей гексагональной симметрией. Кристаллы также имеют характерные геометрические формы – вспомним хотя бы кубическую форму кристаллов соли, отражающую регулярность атомной структуры. Падающая дождевая капля имеет форму идеальной сферы и, замерзая, превращается в ледяной шарик – градину.

Другой вид симметрии, часто наблюдаемый в природе и в созданных человеком вещах, – так называемая зеркальная симметрия. Человеческое тело обладает (приближенно) зеркальной симметрией относительно вертикальной оси. В зеркале правая и левая руки и другие части тела меняются местами, но видимое Вами зеркальное отражение узнаваемо. Многие архитектурные сооружения, например арки или соборы, обладают зеркальной симметрией.

Между геометрической симметрией и тем, что в физике принято называть законами сохранения, существует тесная связь. Законы сохранения говорят нам, что некоторые величины не изменяются со временем. В американском футболе число игроков на поле сохраняется. Игроки могут выходить на поле и уходить с поля, но общее число их остается постоянным. В физике существует закон, согласно которому в любой изолированной системе энергия, импульс и момент импульса должны сохраняться. Это отнюдь не означает, что изолированная система не может изменяться, – просто любое изменение, происходящее в системе, должно быть таким, чтобы три названные величины оставались постоянными. В бильярде, где из- за гладкой текстуры поверхности бильярдного стола шары приближенно можно считать механически изолированными, законы сохранения энергии и импульса определяют направления движения и скорости шаров.

Законы сохранения энергии, импульса и момента импульса вытекают непосредственно из законов движения Ньютона, но более поздняя формулировка этих законов, данная Лагранжем и Гамильтоном, позволила гораздо четче выявить их значение. Механика Лагранжа и Гамильтона обнажила глубокую и мощную связь между сохранением той или иной величины и, соответствующей симметрией рассматриваемой

Вы читаете Суперсила
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату