квантовая теория в той же мере применима к веществу, как и к излучению, и в последующие годы стал ведущим авторитетом и лидером среди физиков в области концептуальных основ квантовой механики. Институт Бора в Копенгагене был центром исследований по квантовой физике на протяжении более чем десятилетия. Однажды Бор заметил своим коллегам: “Если у человека при первом знакомстве с квантовой механикой голова не идет кругом, то он не понимает в ней ничего”. В своей книге “Физика и философия” Гейзенберг вспоминает о первых мучительных сомнениях по поводу смысла новой квантовой механики:
Самым крупным оппонентом квантовой механики был Эйнштейн. Хотя ему самому довелось приложить руку к формулировке квантовой теории, он никогда полностью не разделял ее идей, считая квантовую теорию либо ошибочной, либо в лучшем случае “истинной наполовину”. Известно его изречение: “Бог не играет в кости”. Эйнштейн был убежден, что за квантовым миром с его непредсказуемостью, неопределенностью и беспорядком скрывается привычный классический мир конкретной действительности, где объекты обладают четко определенными свойствами, такими, как положение и скорость, и детерминировано движутся в соответствии с причинно-следственными закономерностями. “Безумие” атомного мира по утверждению Эйнштейна, не является фундаментальным свойством. Это всего лишь фасад, за которым “безумие” уступает место безраздельному господству разума.
Эйнштейн пытался найти это фундаментальное свойство в нескончаемых дискуссиях с Бором – наиболее ярким выразителем взглядов той группы физиков, которые считали квантовую неопределенность неотъемлемой чертой природы, не сводимой к чему-либо другому. Эйнштейн с завидным упорством продолжал свои атаки на квантовую неопределенность, пытаясь придумать гипотетические (“мысленные”, как принято говорить) эксперименты, которые обнаружили бы логический изъян в официальной версии квантовой теории. Бор каждый раз отражал нападки Эйнштейна, опровергая его аргументы.
Особенно памятен один эпизод на конференции, на которой собрались многие ведущие физики Европы в надежде услышать о последних достижениях новой тогда квантовой теории. Эйнштейн направил свою критику против варианта принципа неопределенности, устанавливающего, с какой точностью можно определить энергию частицы и момент времени, когда частица ей обладает. Эйнштейн предложил необычайно остроумную схему, позволяющую обойти неопределенность энергии—времени. Его идея сводилась к точному намерению энергии с помощью взвешивания: знаменитая формула Эйнштейна E=
На этот раз Бор был обеспокоен, и те, кто видел, как он провожал Эйнштейна в гостиницу, заметили, что Бор был сильно взволнован. Но на следующий день Бор, проведший бессонную ночь за детальным анализом рассуждений Эйнштейна, торжествуя, обратился к участникам конференции. Развивая свои аргументы против квантовомеханической неопределенности, Эйнштейн упустил из виду один важный аспект созданной им самим теории относительности. Согласно этой теории, гравитация замедляет течение времени. А поскольку при взвешивании без гравитации не обойтись, эффектом замедления времени пренебречь нельзя. Бор продемонстрировал, что при надлежащем учете этого аффекта неопределенность восстанавливается на обычном уровне.
Самые важные мысленные эксперименты Эйнштейна, не утратившие своего значения и поныне, были предложены лишь в 1935 г., когда вместе со своими коллегами Борисом Подольским и Натаном Розеном он опубликовал в журнале
К тому времени было общепризнано, что любая попытка непосредственно измерить положение и импульс частицы обречена на провал по простой причине: когда вы пытаетесь измерить положение частицы, само измерение вносит не поддающиеся контролю изменения в величину импульса частицы. В свою очередь измерение импульса аннулирует всю полученную ранее информацию о положении частицы. Измерение одного типа несовместимо с измерением другого типа и аннулирует его результат. И если Эйнштейн надеялся преуспеть в попытке одновременного измерения координат и импульсов, ему надлежало избрать более тонкую стратегию.
Если отвлечься от второстепенных деталей, то суть работы Эйнштейна, Подольского и Розена сводится к следующему. Пусть установлено, что невозможно
Использованный Эйнштейном и его коллегами принцип достаточно известен. При игре в бильярд, когда шар, по которому игрок ударяет кием, сталкивается с другим шаром, оба они разлетаются в разные стороны. Но их движения не произвольны, а жестко связаны друг с другом законом действия и противодействия – законом сохранения импульса. Измерив импульс одного шара, можно судить об импульсе другого (который может откатиться далеко в сторону), даже непосредственно не наблюдая за ним– Закон сохранения импульса справедлив и для квантовых частиц. Значит, необходимо лишь, чтобы две квантовые частицы, 1 и 2, столкнувшись между собой, провзаимодействовали и разлетелись на большое расстояние. В этот момент можно измерить импульс частицы 1. Зная его, можно, воспользовавшись законом сохранения импульса, точно вычислить импульс частицы 2, которая, собственно, нас и интересует. Измерение импульса частицы 1, разумеется, внесет неопределенность в ее положение, но это несущественно, так как не влияет на положение частицы 2 (а нас интересует именно она), поскольку та находится далеко; в принципе она могла бы располагаться на расстоянии нескольких световых лет. Если в один и тот же момент непосредственно измерить положение частицы 2, то ее положение и импульс станут известны одновременно. Иначе говоря, мы перехитрим принцип неопределенности!
Рассуждения Эйнштейна—Подольского—Розена основаны на двух допущениях, имеющих принципиальное значение. Во-первых, предполагается, что измерение, проведенное в одном месте, не может мгновенно повлиять на частицу, находящуюся далеко от него. Такое допущение основано на том, что взаимодействие между системами ослабевает с расстоянием. Трудно представить, чтобы два электрона, разделенные расстоянием в несколько метров, а тем более световых лет, каким-то неведомым образом влияли на положение и импульс друг друга. Эйнштейн отвергал подобную мысль, называя ее “призрачным действием на расстоянии”.
Отвергая идею мгновенного дальнодействия, Эйнштейн исходил из своего убеждения, что никакой сигнал или воздействие не могут распространяться быстрее света. Это – ключевой момент теории относительности, и им не следовало пренебрегать. Кроме того, невозможность распространения сигналов со