нового судна дали обнадеживающие результаты, но в целом такая система привода едва ли могла считаться удачной и таила в себе много неудобств — прежде всего она была дорогой и неэкономичной в смысле затрат энергии.

В том же году Нобель купил лицензию на двигательную установку Дель-Пропосто, позволявшую более экономично использовать дизель в качестве судовой машины. Принцип ее действия заключался в том, что на переднем ходу дизель непосредственно связывался с гребным винтом, а электрическая передача применялась лишь для заднего хода и маневрирования. Это значительно снижало потери энергии, ведь большую часть времени винты получали вращение непосредственно от дизеля, а для маневрирования и заднего хода не требовалось полной мощности. В 1904 году по этой системе было оборудовано нефтеналивное судно «Сармат». Оно было снабжено двумя дизелями по 180 л.с. и двумя электрогенераторами. Каждый дизель соединялся с электрогенератором, а потом через муфту с гребным винтом, на котором располагался электромотор. При переднем ходе дизель работал прямо на винт, а генератор и электродвигатель вращались, не давая и не получая тока, как маховики. При заднем ходе двигатель начинал работать на электрогенератор, который посылал ток на электромотор и давал гребному винту обратное вращение.

Результаты первых же рейсов «Сармата» показали все преимущества дизельных установок на судах. Расходы нефти против однотипных пароходов (которые работали на нефти, а не на угле) оказались в пять раз меньшими. В то же время маневрирование и управление нисколько не ухудшились. О технических испытаниях теплохода печатались отчеты, и не только в России — «Сармат» сделался знаменитостью. Однако отсутствие реверса все еще мешало широкому распространению теплоходов. Только в 1908 году многолетние поиски увенчались созданием реверсного двигателя. Как уже отмечалось, в реверсном двигателе необходимо было иметь, во-первых, механизм, переключающий органы распределения переднего и заднего хода, вводящий в действие одни и одновременно выключающий другие, и, во-вторых, устройство для пуска в ход двигателя при любом положении коленчатого вала. Из этих двух элементов реверса первый, то есть механизм для перестановки распределения, был создан довольно легко: на распределительном валу разместили две системы кулачков (смотри выше описание устройства дизеля) — одну для переднего, а другую для заднего хода. Передвижением всей системы в одну сторону двигатель получал распределение для переднего хода, передвижением в обратную — для заднего. Реверсировка двигателя (переход от «полного вперед» до «полного назад») занимала 10-12 секунд. Устройство для пуска в ход, наоборот, составляло главную и более трудную задачу, но и она была очень удачно разрешена русскими инженерами на заводе Нобеля. Правда, эти дизельные машины были изготовлены не для теплохода, а для подводной лодки «Минога», спущенной в 1908 году, которая, таким образом, стала первой в мире дизельной подводной лодкой.

Дизели на «Миноге» были трехцилиндровые. Задача выхода из мертвого хода была разрешена следующим образом: переход от работы системы воздухом на работу нефтью происходил не сразу, а постепенно — сначала все цилиндры работали воздухом, затем один переключался на нефть, после того как он давал рабочий ход, на нефть переводился второй цилиндр и так далее. Разновременность и последовательность вспышек в цилиндре выводили коленчатый вал из любого положения. Одновременно путем уменьшения и увеличения подачи нефти было достигнуто регулирование числа оборотов. Таким образом, были разрешены все проблемы по созданию судовой дизельной машины. Второй реверсный двигатель установили на подводной лодке «Акула», а потом Нобель стал оснащать ими свои нефтеналивные суда.

После успешных испытаний в России дизель-моторы в качестве судовых машин стали внедрятся по всему миру. Сначала дизели ставили только на небольшие суда, но во втором десятилетии XX века наступил перелом и в морском судостроении. В 1911 и 1912 годах на верфях Германии и Англии приступили к постройке нескольких крупных теплоходов. В 1912 году со стапелей в Дании сошел первый товарно- пассажирский теплоход «Зеландия», водоизмещением 3200 т и грузоподъемностью 7400 т. За его первым плаванием из Копенгагена в Лондон следил весь мир. Вскоре было подсчитано, что эксплуатация «Зеландии» дает 160 тысяч марок экономии в год по сравнению с пароходами того же класса. Это решило судьбу нового вида транспорта.

69. АККУМУЛЯТОР

Открытие аккумулирующего эффекта относится к числу важнейших и значительнейших изобретений в области электротехники. Очень часто возникала и возникает необходимость питать электричеством приборы или механизмы в таком месте, где нет источников энергии. Долгое время для этих целей использовали гальваническую батарею, но она была слабым, дорогим и чрезмерно громоздким источником тока. Создание электрического аккумулятора значительно упростило эту задачу.

Еще в 1802 году Риттер открыл, что две медные пластины, опущенные в кислоту и соединенные с гальванической батареей, заряжаются и их потом можно в течение короткого времени использовать как постоянный источник тока. Это явление позже изучалось многими другими учеными. В 1854 году немецкий военный врач Вильгельм Зинстеден наблюдал следующий эффект: при пропускании тока через свинцовые электроды, погруженные в разведенную серную кислоту, положительный электрод покрывался двуокисью свинца PbO2, в то время как отрицательный электрод не подвергался никаким изменениям. Если такой элемент замыкали потом накоротко, прекратив пропускание через него тока от постоянного источника, то в нем появлялся постоянный ток, который обнаруживался до тех пор, пока вся двуокись свинца не растворялась в кислоте. Таким образом, Зинстеден вплотную приблизился к созданию аккумулятора, однако он не сделал никаких практических выводов из своего наблюдения.

Только пять лет спустя, в 1859 году, французский инженер Гастон Планте случайно сделал то же самое открытие и построил первый в истории свинцовый аккумулятор. Этим было положено начало аккумуляторной техники.

Аккумулятор Планте состоял из двух одинаковых свинцовых пластин, навитых на деревянный цилиндр. Друг от друга они отделялись тканевой прокладкой. Устроенный таким образом прибор помещали в сосуд с подкисленной водой и соединяли с электрической батареей. Спустя несколько часов, отключив батарею, можно было снимать с аккумулятора достаточно сильный ток, который сохранял в течение некоторого времени свое постоянное значение.

Чем объясняются процессы, протекающие в аккумуляторе? Как и в гальваническом элементе, электрический ток здесь — следствие химической реакции, которая может протекать многократно в обе стороны. Представим себе, что мы начинаем зарядку разрядившегося аккумулятора, присоединив его к источнику постоянного тока. Обычно еще не заряженная масса положительной свинцовой пластинки содержит на себе остатки предыдущего цикла — окись свинца PbO и сернокислый свинец PbSO4, а отрицательная — только окись свинца PbO. Под действием электрического тока электролит — подкисленная вода — начинает разлагаться: на положительном электроде выделяется кислород, который тут же окисляет окись свинца и сернокислый свинец до перекиси PbO2 (причем кислотный остаток SO4 уходит в раствор), а на отрицательной пластине выделяется водород. Последний соединяется с кислородом окиси, образуя металлический свинец и воду. Затем газ начинает накапливаться в порах свинцовой пластины.

Если заряженный аккумулятор включить в цепь, то ток, проходивший через аккумулятор во время зарядки, меняет свое направление. Вследствие этого на той пластинке, где раньше выделялся кислород, начинает выделяться водород, который вступает в реакцию с кислородом перекиси свинца. На другой пластинке происходит выделение кислорода. Серная кислота из жидкости переходит на положительный электрод и опять образует сернокислый свинец, тогда как водород и свинец на отрицательной пластине окисляются, первый — в воду, второй — в окись свинца. В несколько упрощенном виде (без учета параллельных процессов) химическая реакция разрядки имеет вид:

PbO2 + Pb + 2H2SO4 = 2PbSO4 + 2H2O.

При зарядке явления идут в противоположную сторону. Эта реакция, сопровождаемая выделением электрического тока, продолжается до тех пор, пока количество окиси свинца на обеих пластинках не уравновешивается. Та же реакция идет в разомкнутом аккумуляторе, но намного медленнее. При заряжении (вследствие выделения кислотного остатка в раствор) удельный вес жидкости в аккумуляторе увеличивается, а при разряжении — уменьшается (поскольку при разряжении серная кислота соединяется с окисью свинца и образует на электродах сернокислый свинец). Во время разрядки энергия химических реакций превращается в электрическую, а во время зарядки — наоборот.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату