присоединили катушку. Очевидно, конденсатор начнет разряжаться, и в цепи появится электрический ток, однако сила его не достигнет сразу максимального значения, а будет увеличиваться постепенно вследствие явления самоиндукции в катушке. В тот момент, когда конденсатор полностью разрядится, сила тока в катушке достигнет максимальной величины. Что же получится? Несмотря на то что обе пластины конденсатора уже будут иметь нулевой заряд, протекание тока через катушку продолжится, поскольку вследствие той же самоиндукции ток в катушке не может прекратиться мгновенно. Катушка словно превратится на несколько мгновений в источник тока и будет заряжать конденсатор точно так же, как это делала электрическая батарея. Только теперь заряды пластин меняются местами — та, которая, до этого была отрицательно заряженной, становится положительной, и наоборот. В результате, когда ток в катушке будет равен нулю, конденсатор окажется снова заряженным. Он, впрочем, в то же мгновение опять начнет разряжаться через катушку, и весь процесс повторится в обратном направлении. Если бы не было неизбежных потерь электроэнергии, такая перезарядка могла бы происходить сколь угодно долго.

Описанное явление называют электрическими колебаниями, а систему конденсатор — катушка, в которой происходят эти колебания, — колебательным контуром. В зависимости от того, сколько раз за одну секунду конденсатор успеет перезарядиться, говорят о той или иной частоте колебаний. Частота колебаний напрямую связана со свойствами колебательного контура, прежде всего, индуктивностью катушки и емкостью конденсатора. Замечено, что чем меньше эти величины, тем больше частота колебаний в контуре, то есть конденсатор успевает большее число раз перезарядиться за одну секунду.

Как и любые колебания (например, колебания маятника), колебания в системе конденсатор — катушка, если их не поддерживать извне, со временем прекратятся, так как первоначальная энергия будет расходоваться на нагрев проводов и электромагнитное излучение. Это означает, что с каждым колебанием максимальная величина тока в катушке и максимальное напряжение на обкладках конденсатора будут все меньше и меньше. Однако точно так же, как колебание маятника в механических часах, электрические колебания можно поддерживать, если, к примеру, подключить конденсатор к внешнему источнику переменного тока. Но переменный ток, как мы помним, тоже изменяет свою величину с определенной частотой, или, говоря другими словами, имеет собственную частоту колебаний. Любой колебательный контур не безразличен к тому, какую частоту колебания имеет питающий его ток. Если, к примеру, этот ток имеет слишком большую или слишком маленькую частоту колебания по сравнению с частотой колебания самого контура, то сила тока и его напряжение в колебательном контуре никогда не будут большими (поскольку это внешнее воздействие будет больше мешать его собственным колебаниям, чем помогать им). Однако в тех случаях, когда частота колебаний внешнего тока близка к собственной частоте колебаний контура, сила тока и напряжение контурного тока начинают возрастать и достигают своего максимума при полном совпадении этих частот. В этом случае говорят, что колебательный контур находится в резонансе. Особенно ярко проявляется резонанс в контурах с небольшим сопротивлением. В этом случае напряжение на конденсаторе и катушке может во много раз превосходить внешнее напряжение питающего тока. Происходит своего рода всплеск или бросок напряжения.

Явление электрического резонанса и было использовано для осуществления избирательной радиосвязи. Маркони одним из первых стал настраивать колебательные контуры передающей и принимающей станций на одну и ту же частоту. Для этого он, в частности, использовал свой джиггер, включая параллельно его вторичной обмотке конденсатор и получая таким образом колебательный контур. Схема передатчиков также была изменена включением в цепь антенны индуктивных катушек и конденсаторов, так что каждая передающая станция могла передавать сигналы с определенной частотой колебания волны. Поскольку теперь несколько радиостанций передавали сообщения каждая со своей частотой, то излучаемые ими волны возбуждали в приемной антенне переменные токи различных частот. Но приемник выбирал только те сигналы, частота которых совпадала с собственной частотой колебания его колебательного контура, ведь только в этом случае наблюдалось явление резонанса. Джиггер в этой схеме работал как фильтр и усиливал не любой антенный ток (как это было прежде), а выделял среди них ток той частоты, на которую был настроен данный приемник. С этого времени резонансные контуры стали неотъемлемой частью как приемных, так и передающих устройств.

В начале XX века уже несколько десятков ученых во многих странах с увлечением занимались беспроволочным телеграфом. Однако наибольшие успехи по-прежнему были связаны с именем Маркони, который, несомненно, был одним из самых выдающихся радиотехников этого времени. После ряда опытов передачи на большие расстояния Маркони сделал поразительное открытие — оказалось, что выпуклость земного шара нисколько не мешает движению электромагнитных волн. Это подтолкнуло его к эксперименту по телеграфированию через океан. Уже в 1901 году состоялась первая в истории трансатлантическая радиопередача, во время которой помощник Маркони, Флеминг, передал с английской станции в Польдю кодом Морзе букву 'S', а Маркони, находившийся на другом берегу Атлантического океана, на острове Ньюфаундленде, принял ее на расстоянии 1800 миль.

Следующим важным моментом в усовершенствовании приемников стало создание новых волноуловителей (детекторов). Когерер Бранли сыграл важную роль в первые годы развития радиосвязи. Однако он был слишком капризным и сложным в обращении. Кроме того, его приходилось постоянно встряхивать для восстановления способности отзываться на очередной радиосигнал. Одной из центральных задач стало создание «самонастраивающегося» когерера. Первая попытка в этом направлении была сделана в 1899 году Поповым с телефоном. Вторая Маркони, сконструировавшего в начале XX века свой магнитный детектор.

Принцип действия магнитного детектора основывался на явлении так называемого гистерезиса. Дело в том, что обычно железо намагничивается с некоторым опозданием во времени. Однако намагничивание можно усилить, если в момент воздействия внешнего магнитного поля вызвать заметное сотрясение молекул железа. Это можно сделать путем механического удара или коротким импульсом другого магнитного поля. Данное явление и было использовано Маркони.

В его магнитном детекторе на два роликовых диска натягивалась бесконечная лента из мягкой железной проволоки, двигавшаяся со скоростью пять дюймов в секунду и проходившая под полюсами двух постоянных магнитов внутри небольшой стеклянной трубки. На эту трубку наматывались первичная и вторичная обмотки, причем первичная обмотка включалась в цепь антенны, а вторичная присоединялась к телефону. Проходя под полюсами магнита, железная лента намагничивалась сначала в одном, а потом в противоположном направлении. Само перемагничивание происходило под средними сдвоенными одноименными полюсами, но не тотчас в момент прохождения под ними ленты, а несколько запаздывая (из-за упомянутого выше свойства железа). Картина магнитных линий, исходивших из полюсов и замыкавшихся в железной проволоке, искажалась, и магнитные линии представлялись как бы увлекаемыми проволокой в сторону движения. Высокочастотное магнитное поле, образовавшееся внутри первичной обмотки во время прохождения принимаемого радиосигнала, мгновенно ослабляло явление гистерезиса в железной проволоке и производило в ней ударное перемагничивание. Конфигурация силовых линий резко изменялась, и они устанавливались в том положении, которое свойственно им при неподвижной проволоке. Это внезапное смещение силовых линий создавало мгновенный ток во вторичной обмотке, вызывавший звук в телефоне. Прибор не требовал встряхиваний и был всегда готов к приему очередного сигнала. В те же годы другими радиотехниками были предложены другие типы детекторов.

С этого времени началось бурное развитие радиотехники. В 1902 году, используя свой магнитный детектор, Маркони провел серию замечательных опытов на итальянском военном крейсере «Карло Альберто». Во время плавания из Италии в Англию и Россию он совершенно свободно вел прием на расстоянии 2000 км от Польдю, где находилась передающая станция. В ноябре того же 1902 года была устроена официальная радиосвязь между США и Англией. Президент Рузвельт и король Эдуард VIII обменялись приветственными радиограммами. А в октябре 1907 года фирма Маркони открыла для широкой публики первую в истории радиотелеграфную станцию, передающую сообщения из Европы в Америку. Интерес к этой новинке оказался огромным — в первый же день было передано 14 тысяч слов.

66. ДИЗЕЛЬ

Как известно, одним из основных показателей, по которому оценивается работа любого, в том числе теплового, двигателя, является его КПД. Чем больше энергии, выделившейся при сгорании топлива, превращается в полезную работу, чем меньше ее теряется при различных преобразованиях, тем лучше. Во всех существующих тепловых двигателях эти потери очень велики, так что более двух третей выделившейся

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату