было проводить с помощью детонации. Для этой цели Нобель в том же 1867 году изобрел гремучертутный капсюльный детонатор. Динамит сразу нашел широчайшее применение при строительстве шоссе, туннелей, каналов, железных дорог и других объектов, что во многом предопределило стремительный рост состояния его изобретателя. Первую фабрику по производству динамита Нобель основал во Франции, затем он наладил его производство в Германии и Англии. За тридцать лет торговля динамитом принесла Нобелю колоссальное богатство — около 35 миллионов крон.

Процесс изготовления динамита сводился к нескольким операциям. Прежде всего необходимо было получить нитроглицерин. Это было наиболее сложным и опасным моментом во всем производстве. Реакция нитрации происходила, если 1 часть глицерина обрабатывали тремя частями концентрированной азотной кислоты в присутствии 6 частей концентрированной серной кислоты. Уравнение имело следующий вид:

C3H5(OH)3 + 3HNO3 = C3H5(NO3)3 + 3H2O.

Серная кислота в соединении не участвовала, но ее присутствие было необходимо, во-первых, для поглощения выделявшейся в результате реакции воды, которая в противном случае, разжижая азотную кислоту, тем самым препятствовала бы полноте реакции, а, во-вторых, для выделения образующегося нитроглицерина из раствора в азотной кислоте, так как он, будучи хорошо растворим в этой кислоте, не растворялся в ее смеси с серной. Нитрация сопровождалась сильным выделением теплоты. Причем если бы вследствие нагревания температура смеси поднялась выше 50 градусов, то течение реакции направилось бы в другую сторону — началось бы окисление нитроглицерина, сопровождающееся бурным выделением окислов азота и еще большим нагреванием, которое бы привело к взрыву. Поэтому нитрацию нужно было вести при постоянном охлаждении смеси кислот и глицерина, прибавляя последний понемногу и постоянно размешивая каждую порцию. Образующийся непосредственно при соприкосновении с кислотами нитроглицерин, обладая меньшей плотностью сравнительно с кислой смесью, всплывал на поверхность, и его можно было легко собрать по окончании реакции.

Приготовление кислотной смеси на заводах Нобеля происходило в больших цилиндрических чугунных сосудах, откуда смесь поступала в так называемый нитрационный аппарат.

Аппарат состоял из свинцового сосуда A, который помещался в деревянном чане B и закрывался свинцовой крышкой L, которая при работе замазывалась цементом. Через крышку проходили концы двух свинцовых змеевиков D, находящихся внутри аппарата (через них постоянно подавалась холодная вода). Через трубку C в аппарат подавался и холодный воздух для размешивания смеси. Трубка F отводила из аппарата пары азотной кислоты; трубка G служила для наливания отмеренного количества кислой смеси; через трубку H вливали глицерин. В сосуде M отмерялось необходимое количество этого вещества, которое затем впрыскивалось в азотную смесь посредством сжатого воздуха, впускаемого по трубке O. В такой установке можно было за раз обработать около 150 кг глицерина. Впустив требуемое количество кислотной смеси и охладив ее (пропуская холодный сжатый воздух и холодную воду через змеевики) до 15-20 градусов, начинали вбрызгивать охлажденный глицерин. При этом следили, чтобы температура в аппарате не поднималась выше 30 градусов. Если температура смеси начинала быстро подниматься и приближалась к критической, содержимое чана можно было быстро выпустить в большой сосуд с холодной водой.

Операция образования нитроглицерина продолжалась около полутора часов. После этого смесь поступала в сепаратор — свинцовый четырехугольный ящик с коническим дном и двумя кранами, один из которых находился в нижней части, а другой — сбоку. Как только смесь отстаивалась и разделялась, нитроглицерин выпускали через верхний кран, а кислотную смесь — через нижний. Полученный нитроглицерин несколько раз промывали от избытка кислот, так как кислота могла вступить с ним в реакцию и вызвать его разложение, что неминуемо вело к взрыву. Во избежание этого в герметический чан с нитроглицерином подавали воду и перемешивали смесь с помощью сжатого воздуха. Кислота растворялась в воде, а так как плотности воды и нитроглицерина сильно различались, отделить их затем друг от друга не составляло большого труда. Для того чтобы удалить остатки воды, нитроглицерин пропускали через несколько слоев войлока и поваренной соли. В результате всех этих действий получалась маслянистая жидкость желтоватого цвета без запаха и очень ядовитая (отравление могло происходить как при вдыхании паров, так и при попадании капель нитроглицерина на кожу). При нагревании свыше 180 градусов она взрывалась с ужасной разрушительной силой.

Приготовленный нитроглицерин смешивали с кизельгуром. Перед этим кизельгур промывали и тщательно измельчали. Пропитывание его нитроглицерином происходило в деревянных ящиках, выложенных внутри свинцом. После смешения с нитроглицерином динамит протирали через решето и набивали в пергаментные патроны.

В кизельгуровом динамите во взрывной реакции участвовал только нитроглицерин. В дальнейшем Нобель придумал пропитывать нитроглицерином различные сорта пороха. В этом случае порох тоже участвовал в реакции и значительно увеличивал силу взрыва.

43. РОТАЦИОННАЯ МАШИНА

Одним из замечательнейших событий в истории техники стало появление в середине XIX века скоропечатной ротационной машины, позволившей в тысячи раз увеличить выпуск печатных изданий, прежде всего газет и журналов. Это изобретение, точно так же как создание в свое время Гутенбергом первого книгопечатного станка, имело огромное влияние на все стороны жизни человечества. В самом деле, быстрое развитие образования и распространение его в широких народных массах в XVIII-XIX веках создавало громадную потребность в печатном слове, что повлекло за собой увеличение тиража книг и газет. Между тем старый печатный станок претерпел очень мало изменений с XVI века и был плохо приспособлен к тому, чтобы удовлетворить назревшую потребность. Многие типографы в XVIII веке ломали голову над тем, как увеличить его производительность и создать скоропечатную машину. Верный путь был в конце концов найден Фридрихом Кенигом, сыном небогатого прусского фермера. Пятнадцати лет он поступил учеником в типографию, и с этого времени вся его жизнь была связана с печатным делом. Еще в 1794 году Кениг сделал первое усовершенствование, создав модель печатной машины с непрерывным, при помощи зубчатых колес, подниманием и опусканием пиана (пресса). Однако прошло много лет, прежде чем ему удалось применить свое изобретение на практике. Все хозяева немецких типографий, к которым Кениг обращался за поддержкой, отвечали ему отказом. В 1806 году он перебрался в Лондон, и только здесь на его изобретение обратили внимание.

В 1807 году три лондонских типографии дали Кенигу деньги на постройку печатающей машины. В 1810 г., при помощи магистра математики Андрея Бауэра, Кениг собрал скоропечатный станок, который за счет различных улучшений в конструкции мог производить до 400 оттисков в час. Однако этого было недостаточно. Нужна была принципиально новая схема, которая позволила бы полностью или почти полностью исключить ручной труд. В старом станке, как мы помним, процесс печатания происходил при помощи ряда плоских досок, на плоский талер ставился набор при помощи плоского декеля, с плоским же рашкетом к набору, намазанному краской, прижимался плоским пианом лист бумаги. Особенно много времени уходило на намазывание набора краской — его постоянно приходилось выдвигать из-под пресса и снова задвигать на место. Сначала Кениг попытался ускорить эту операцию за счет того, что краска на набор стала наноситься с помощью специального покрасочного валика. Возможно, отталкиваясь от этой идеи, он решил и пресс сделать не плоским, а цилиндрическим в виде барабана. В этом состояла самая важная находка Кенига. В 1811 году он создал первую скоропечатную машину цилиндрического типа, в которой лист бумаги, будучи положен на цилиндр (барабан), прокатывался этим цилиндром по укрепленной на талере форме с набором, принимающим краску с вращающегося валика. Из прежних плоских досок в новой конструкции остался только талер, на который ставился набор, плотно заключенный в металлическую раму. Замена плоских поверхностей вращающимися цилиндрами позволила сразу в несколько раз увеличить производительность станка.

Машина Кенига была для своего времени настоящим шедевром инженерной мысли, тем более удивительным, что почти все операции она производила автоматически. При вращении главного колеса приходил в действие сложный механизм из целой системы зубчатых колес и зубчатых передач, двигавший в нужном направлении и в нужные моменты все работающие части машины. Основными ее узлами были покрасочный аппарат и печатающий барабан. Между ними взад и вперед двигалась тележка-талер с набором. Приняв краску от красочного аппарата, талер задвигался под печатающий барабан, который прокатывал по нему лист бумаги. Таким образом в общих чертах происходил процесс печатания.

Красочный аппарат состоял из длинного ящика с краской и нескольких валиков, последовательно

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату