поступиться одним из четырех микробиологических экспериментов, и выбор пал на волчью ловушку. Для Вишняка, который потратил на нее двенадцать лет, это стало сокрушительным разочарованием.
Многие на его месте могли бы вовсе уйти из биологической группы проекта «Викинг». Но Вишняк был мягким и преданным делу человеком. Он решил, что сможет лучше послужить поиску жизни на Марсе, если отправится в тот район Земли, где условия более всего похожи на марсианские, – в свободные ото льда антарктические оазисы. Исследователи, уже изучавшие антарктическую почву, полагали, что немногочисленные микробы, которых им удалось там обнаружить, не местного происхождения, а занесены ветром из районов с более мягким климатом. Вишняк же, памятуя об экспериментахс марсианскими консервами, считал, что жизнь обладает прекрасной способностью к адаптации и что в Антарктиде вполне может быть своя микрофлора. Если земные микроорганизмы могут жить на Марсе, думал он, то почему не в Антарктиде, где гораздо теплее, выше влажность, больше кислорода и не такое интенсивное ультрафиолетовое излучение. По его мысли, обнаружение жизни в антарктических оазисах увеличивает шансы найти ее и на Марсе. Вишняк считал несостоятельными экспериментальные методы, которые использовались ранее для доказательства того, что в Антарктиде нет местных бактерий. Питательные вещества, подходящие для комфортных условий университетской микробиологической лаборатории, не годились для безводной полярной пустыни.
Итак, 8 ноября 1973 года Вишняк, вооруженный новым микробиологическим оборудованием, и его напарник-геолог были доставлены вертолетом со станции Мак-Мердо в оазис горного массива Асгард, вблизи горы Балдера. Задача Вишняка сводилась к тому, чтобы поместить в антарктическую почву ряд небольших микробиологических станций и вернуться за ними месяц спустя. Десятого декабря он отправился собирать образцы на горе Балдера. На фотографии, сделанной с расстояния три километра, видно, как он уходит. Это был последний раз, когда его видели живым. Спустя восемнадцать часов его тело нашли у основания ледяного обрыва. Он заблудился, попал в неисследованный район и, вероятно поскользнувшись на льду, упал с крутого склона высотой 150 метров. Может быть, он увидел что-то неожиданное, например место, подходящее для жизни микробов, или клочок зелени там, где ее не должно быть. Но если и так, мы этого никогда не узнаем. Последняя запись в небольшом коричневом блокноте, который он взял с собой в тот день, сообщает: «Извлечена станция 202. 10 декабря 1973. 2230 часов. Температура почвы -10°. Температура воздуха -16°». Это были типичные для Марса летние температуры.
Многие микробиологические станции Вишняка так и остались в Антарктиде. Но те из них, которые удалось вернуть, его коллеги и друзья исследовали, пользуясь разработанными им методами. И в каждом были найдены разновидности микробов, которые не удалось бы обнаружить при помощи обычных приемов. Его вдова Елена Симпсон-Вишняк выявила в образцах новый вид дрожжевой культуры, по-видимому, уникальный для Антарктики. В больших камнях, привезенных этой экспедицией из Антарктиды, Имре Фридман[95] обнаружил крошечный, но удивительный микробиологический мир: в мельчайших включениях жидкой воды, таящихся на глубине один-два миллиметра внутри камня, поселились водоросли. На Марсе подобный выбор местообитания оказался бы еще более удачным, поскольку видимый свет, необходимый для фотосинтеза, может проникнуть на такую глубину, тогда как смертельный для бактерий ультрафиолет заметно ослабеет.
Поскольку конструирование космических аппаратов «Викинг» было завершено за много лет до запуска, а Вишняка не стало, результаты его антарктических экспериментов не оказали влияния на программу поиска марсианской жизни. Микробиологические эксперименты проводились не при тех низких температурах, которые характерны для Марса, и в большинстве своем не предусматривали длительного инкубационного периода. Все они основывались на вполне определенных допущениях, каким именно должен быть марсианский метаболизм. Не было и возможности искать жизнь внутри камней.
Каждый из посадочных модулей «Викингов» был снабжен манипулятором, который подбирал вещество с поверхности, аккуратно переносил его внутрь космического аппарата и помещал частицы грунта на небольшой электрический транспортер наподобие вагона-хоппера[96] , который доставлял их к пяти экспериментальным установкам: одна исследовала неорганические составляющие почвы, другая искала в песке и пыли органические молекулы, остальные три пытались обнаружить живых микробов. Надеясь отыскать жизнь на планете, мы выдвигаем определенные предположения. По возможности мы стараемся не загадывать, что жизнь везде будет такой же, как у нас. Но всему есть предел. Ведь мы хорошо знакомы только с земной жизнью. Поскольку биологические эксперименты «Викингов» были первыми в своем роде, вряд ли стоило ожидать, что они окончательно разрешат вопрос о жизни на Марсе. Итог получился дразнящим, внушающим беспокойство, провокационным, побуждающим к действию и оставался, по крайней мере до последнего времени, существенно неполным.
В каждом из трех микробиологических экспериментов исследовалась своя проблема, но все они касались марсианского метаболизма. Если в марсианской почве есть микроорганизмы, то они должны потреблять пищу и выделять газообразные продукты жизнедеятельности; или они должны захватывать газы из атмосферы и превращать их, возможно при помощи солнечного света, в необходимые для жизни вещества. Поэтому мы доставляем на Марс пищу и надеемся, что марсиане, если они существуют, сочтут ее достаточно вкусной. И тогда мы посмотрим, не выделятся ли из почвы какие-нибудь новые, интересные газы. Или можно ввести в эксперимент наш собственный, помеченный радиоактивными изотопами газ и проследить, не будет ли он преобразован в органическое вещество, что указывало бы на существование маленьких марсиан.
Если придерживаться критериев, утвержденных до запуска, то два из трех микробиологических экспериментов проекта «Викинг» дали положительные результаты. Во-первых, когда марсианский грунт был смешан с земным стерилизованным органическим бульоном, что-то в составе почвы привело к химическому расщеплению бульона, как будто он поглощался микробами, усваивавшими продуктовую посылку с Земли. Во-вторых, когда земные газы были введены в образец марсианской почвы, они вступили с ней в химическую связь – почти как в присутствии фотосинтезирующих микробов, создающих органические вещества из атмосферных газов. Положительные результаты микробиологических экспериментов были получены для семи проб, взятых в двух точках Марса, удаленных друг от друга на 5000 километров.
Но на самом деле все обстоит гораздо сложнее, критерии успеха экспериментов могли оказаться неадекватными. В разработку микробиологических экспериментов проекта «Викинг» и их проверку на различных видах микробов была вложена уйма сил. Значительно меньше внимания уделялось калибровке экспериментов с учетом неорганических веществ, которые могут встретиться на марсианской поверхности. Марс не Земля. И, как свидетельствует история Персиваля Лоуэлла, он может нас одурачить. Не исключено, что неорганический марсианский грунт способен сам, в отсутствие каких-либо микробов, окислять пищу. Возможно, в нем есть какие-то особые неорганические, неживые катализаторы, которые захватывают атмосферные газы и превращают их в органические молекулы.
Недавние эксперименты подтверждают, что такое вполне вероятно. Во время грандиозной марсианской песчаной бури в 1971 году инфракрасный спектрометр «Маринера-9» исследовал спектральные особенности поднятой пыли. Анализируя эти спектры, О. Б. Тун, Дж. Б. Поллак и я обнаружили в них детали, которые лучше всего объяснялись присутствием монтмориллонита[97] и других видов глины. Позднее посадочные аппараты «Викингов» подтвердили присутствие на Марсе переносимых ветром глиняных частиц. А недавно А. Банин и Дж. Ришпон смогли воспроизвести в лабораторных тестах, где вместо марсианской почвы использовались такие глины, ключевые особенности «успешных» микробиологических экспериментов «Викингов» – и тех, что выглядели как фотосинтез, и напоминавших дыхание. Глиняные частицы имеют сложную активную поверхность, способную захватывать и выделять газы, а также катализировать химические реакции. Пока еще слишком рано говорить, что все результаты микробиологических экспериментов «Викингов» объяснимы в рамках неорганической химии, но подобный вывод никого бы уже не удивил. «Глиняная» гипотеза вовсе не исключает возможности жизни на Марсе, но, безусловно, она заставляет нас признать, что неопровержимых свидетельств существования марсианской микрофлоры пока нет.
При всем том результаты Банина и Ришпона имеют огромное значение для биологии, поскольку они продемонстрировали, что даже в отсутствие жизни в некоторых почвах возможны химические реакции,