орган от одного человека другому. Это аналогично проблемам с переливанием крови, поскольку организм после пересадки начинает продуцировать антитела против пересаженного агента. Дело осложняется тем, что разделить органы и кожу на типы и группы не удается.

Биологи научились сохранять некоторое время живые донорские органы, но им не удается справиться с вышеуказанной проблемой. Сердце, удаленное у подопытного животного, остается работающим, и еще в 1880 г. английский врач Сидней Рингер (1834—1910) разработал физиологический раствор, содержащий различные неорганические соли в пропорциях, аналогичных пропорциям крови. Этот раствор позволяет сохранять органы живыми.

Работу по разработке и использованию физиологических растворов для хранения живых органов довел до совершенства американский хирург Алексис Каррель (1873 — 1944). Ему удавалось в течение 20 лет сохранять сердце куриного эмбриона живым и даже растущим.

Итак, если бы не антитела, то трансплантация органов была бы делом решенным. Но даже при всем том сейчас успешно и массовым образом производится трансплантация роговицы глаза; в 1960-х годах было сделано несколько успешных трансплантаций почек.

В 1949 г. австралийский врач Фрэнк Макфарлан Вернет (1899 — 1985) предположил, что способность организма формировать антитела против чужеродных протеинов не является врожденной, а может приобретаться в течение жизни, однако приобретение этой способности может произойти на первых порах после рождения.

В 1961 г. было обнаружено, что вилочковая железа, функция которой до тех пор была неизвестна ученым, «отвечает» за способность организма формировать антитела. Эта железа производит лимфоциты (разновидность белых кровяных телец), чья функция — формирование антител. Вскоре после рождения лимфоциты, произведенные вилочковой железой, путешествуют к лимфатическим узлам и затем — в кровоток. По истечении некоторого времени лимфатические узлы могут сами продолжать исполнять свою функцию, и в пубертатном возрасте вилочковая железа ссыхается и прекращает свою деятельность.

Глава 12 Метаболизм

Химиотерапия

Борьба с бактериальными заболеваниями во многом проще, чем с вирусными. Как уже было показано, бактерии проще размножаются в культуре. Бактерии более уязвимы. Живя вне клетки, они производят ущерб организму, отнимая у него питание либо высвобождая токсины. Однако их метаболизм (химический механизм) отличается от метаболизма клеток хозяина в нескольких аспектах. Поэтому всегда есть шанс, что они будут уязвимы к фармацевтическим средствам, разрушающим их метаболизм без серьезного повреждения клеток хозяина.

Начало использования химических средств против заболевания относится к далеким временам в истории человечества. С давних времен были известны лекари-травники. Их искусство передавалось из поколения в поколение. Использование хинина против малярии — самый известный пример «народного средства», которое со временем было принято на вооружение официальной медициной.

С приходом синтетических химических средств возможность их использования расширилась: теперь против каждой болезни можно было использовать свое лекарство.

Знаменитый бактериолог Эрлих работал в свое время над красками, окрашивающими бактерии, и, поскольку эти краски смешивались с некоторыми компонентами бактериальной клетки, они повреждали рабочий механизм клетки. Эрлих, понимая это, надеялся выявить краситель, достаточно сильно повреждающий клетки бактерий. И он его открыл: это был трипановый красный, уничтожающий трипаносом (простейших, вызывавших многие болезни, в том числе сонную болезнь).

Эрлих продолжал свой исследования, предположив, что способность повреждать клетки возбудителя связана с атомом азота в составе молекулы химиката. По химическим свойствам атомы мышьяка схожи с атомами азота, однако дают более сильный токсический эффект. Он экспериментировал с мышьяксодержащими органическими веществами, опробуя их один за другим.

В 1909 г. один из его помощников обнаружил, что вещество с номером 606 очень эффективно против сифилиса. Это вещество было названо сальварсаном (в наши дни чаще именуется арсфенамином).

Трипановый красный и сальварсан положили начало химиотерапии (излечению при помощи химических средств). Были надежды, что вскоре после этого будут обнаружены аналогичные средства практически против всех болезней. К сожалению, по прошествии нескольких десятилетий список применяемых в химиотерапии средств не пополнился.

Лишь в 1932 г. немецкий врач и биохимик Герхард Домагк (1895—1964), работая над красителями, обнаружил, что инъекции красителя с коммерческим названием пронтозил убивают стрептококки.

Он попытался поставить опыт с использованием пронтозила для людей. Его собственная дочь вскоре заразилась стрептококком после неудачной инъекции. Не помогало ничего, пока Домагк в отчаянии не опробовал свое средство на ребенке. Дочь быстро выздоровела. К 1935 г. мир узнал о новом лекарстве.

Вскоре группа французских бактериологов обнаружила, что действующее вещество в пронтозиле — сульфаниламид. Лекарство было названо чудом. Оно побеждало ряд смертельно опасных заболеваний, в частности пневмонию.

Антибиотики и пестициды

Наибольший успех ждал химиотерапию не в отношении синтетических веществ вроде арсфенамина и сульфаниламида, но в отношении натуральных продуктов. Американский микробиолог Рене-Жюль Дюбуа (род. 1901) работал над почвенными микроорганизмами. Почва принимала на себя сотни и тысячи трупов естественно умерших животных со всеми заболеваниями — и все же не была резервуаром инфекции. Очевидно, она обладает некими антибактериальными агентами. (Такие агенты позже были названы антибиотиками.)

В 1939 г. Дюбуа выделил первый антибиотик — тиротрицин — из почвенной бактерии. Антибиотик не был очень эффективен, однако вызвал живой интерес ученых. Десятилетие до того шотландский бактериолог Александер Флеминг написал интересный обзор, который теперь был вновь актуален.

В 1928 г. Флеминг на некоторое время оставил непокрытой крышкой культуру стафилококка. Вернувшись к работе, он уже готов был выбросить чашку с культурой, когда заметил, что на колонии бактерий, попала плесень и что в этих местах пятна колоний, растворились.

Флеминг выделил плесень и идентифицировал ее: это был грибок Penicillium notatum, обычная плесень, часто встречающаяся на хлебе. Флеминг решил, что плесневый грибок выделяет какой-либо компонент, останавливающий рост бактерий. Он назвал это вещество пенициллином. Он доказал, что вещество не вредит белым кровяным тельцам и другим клеткам человеческого организма.

В 1939 г., благодаря работам Дюбуа, интерес к пенициллину вновь возродился. Разразившаяся Вторая мировая война подстегнула разработку лекарства против бактериологического инфицирования ран. Австралийский патолог Хувард Уолтер Флори (1898—1968) вместе с биохимиком Эрнстом Борисом Чейном (1906—1979) выделили пенициллин, определили его структуру и поставили его производство на промышленную основу. К концу войны они работали во главе большой англо-американской совместной лаборатории. Успех пришел незамедлительно. Пенициллин был и остается основным оружием против инфекции.

После войны были обнаружены и разработаны для производства другие антибиотики. Американский бактериолог Сельман Абрахам Уоксман (род. 1888) систематизировал почвенные микроорганизмы.

В 1943 г. он выделил эффективный антибиотик против бактерий, не повреждаемых пенициллином. В 1945 г. он вышел на мировой рынок под названием стрептомицин.

В 1950-х годах были обнаружены так называемые антибиотики широкого спектра действия. Это — тетрациклины, выступавшие под торговыми марками «ахромицин» и «ареомицин».

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату