диаметрального, радиального, размера высоты), а также для создания различных конструкторских обозначений (баз, шероховатости, отклонений и т. п.).
Завершает теоретическую часть раздел, посвященный общим вопросам работы с главным графическим документом КОМПАС-3D – чертежом. Приведена информация об оформлении чертежей (выборе, применении, редактировании основных надписей), работе с многолистовыми чертежами, а также более подробно рассказано о видах и слоях. В конце приведен пример создания ассоциативного чертежа с уже готовой 3D-модели.
Вторая часть главы демонстрирует приемы и секреты практического черчения. В ней приведены два примера, иллюстрирующие применение чертежно-графического редактора КОМПАС-График для создания и оформления конструкторской документации.
Первый пример – разработка сборочного чертежа одноступенчатого цилиндрического косозубого редуктора по реальным расчетным данным, состоящего из двух проекционных видов. Приведено достаточно подробное описание разработки, сопровождающееся большим количеством рисунков. Этот пример очень полезен для практического освоения работы со слоями и видами, в нем раскрываются особенности использования наиболее популярных команд. Кроме того, излагается методика построения сложных чертежей, включая организацию поддержки проекционной связи между всеми видами изображения, оптимальный выбор количества слоев и видов для удобства последующего редактирования. Достаточно подробно описывается использование вспомогательной геометрии.
Второй пример – построение чертежа детали зубчатого колеса, взятой из только что спроектированного редуктора. В этом примере детально рассказано об оформлении конструкторских чертежей, в частности, о создании всех обязательных элементов деталировочного чертежа (проставления шероховатостей, допусков формы, размещения поверхностей, заполнения технических требований и т. п.).
Файлы всех примеров главы находятся на компакт-диске, прилагаемом к книге, в папке ExamplesГлава 2.
Глава 3
Трехмерное моделирование
• Твердотельное моделирование в КОМПАС-3D
• Практическое моделирование
• Интересные примеры
• Резюме
Любой человек, хоть немного работающий за компьютером, так или иначе сталкивается с трехмерной графикой. Многие просто не обращали на это внимания: наличие красивых элементов оформления, 3D-моделей и анимированных сцен давно считается нормой практически во всех коммерческих программных пакетах, приложениях Интернета, презентациях и рекламных роликах. Это неудивительно – ведь мы живем в мире, измеряемом тремя координатами. Нас окружают объемные объекты со свойственными им визуальными особенностями: цветом, прозрачностью, блеском и пр. Закономерно, что создатели компьютерных приложений стараются как можно больше приблизить элементы интерфейса и само изображение на экране к условиям реального мира – так оно и красивее, и привычнее для восприятия.
На сегодня использование трехмерной графики вышло далеко за пределы сферы информационных технологий. Кинематограф, компьютерные игры, машиностроение, архитектура и строительство – это далеко не полный перечень областей, в которых широко применяется 3D-графика. Некоторые отрасли человеческой деятельности (например, дизайн, инженерные расчеты, мультипликация, игры) уже просто невозможно представить без реалистичных 3D-изображений. Кажется, что так было всегда, но качественная графика, доступная широкому кругу пользователей ПК, появилась не так давно.
За кулисами 3D спрятан очень серьезный математический аппарат, реализованный в ядре графической системы и производящий трехмерные изображения. Математические зависимости, описывающие формирование цифровой модели реальных объектов, а также алгоритмы для просчета освещения трехмерных сцен (областей виртуального пространства, содержащих трехмерные объекты и источники света), были разработаны еще в 1960-х годах. Однако слабые возможности аппаратного обеспечения не позволяли в то время создавать даже совсем несложные 3D-изображения. Первые компьютерные программы, формирующие простые трехмерные модели на основе эскизов, были созданы в 1960-х годах в университете города Юты (США) Иваном Сазерлендом и Дэвидом Эвансом. Начиная с середины 1970-х годов их последователи Эд Катмулл, Джим Блинн, Би Тюн Фонг (все трое были студентами все той же кафедры компьютерной графики в Юте) продолжили развивать технологии работы с 3D-графикой и анимацией. Сначала мало кто воспринимал всерьез студенческие и аспирантские работы по формированию объемных изображений на экране компьютера. Однако фундаментальные исследования, проведенные в этот период, стали началом развития мощнейшей технологии, которая коренным образом изменила представление о возможностях применения компьютерной графики. До сих пор при визуализации используются материал Blinn, созданный Блинном, специальная модель освещения Phong Shading, основанная на расчете интенсивности света в каждой точке поверхности объекта и разработанная Фонгом, а также многое другое.
Со временем геометрические формы создаваемых на экране моделей усложнялись: наряду с простыми геометрическими примитивами и их комбинациями (куб, сфера, тор, различные тела, описываемые несложными алгебраическими уравнениями) появилась возможность поверхностного моделирования. При этом формируемая модель представляет собой поверхность, которая может состоять из множества полигонов (чаще всего треугольников). Развитие поверхностного моделирования стало большим шагом вперед и позволило создавать модели практически любой формы, включая модели живых организмов: людей, растений и т. п. Параллельно со сложностью форм 3D-моделей всегда стоял вопрос их реалистичности. Кроме собственно математического описания геометрии модели, которое бы максимально отвечало форме моделируемого и отображаемого объекта, требовалось его хорошее визуальное представление. Вот здесь очень кстати пришлись достижения ученых-физиков, изучающих оптику и различные формы излучения. Результаты их работ, касающиеся преломления, отражения, поглощения световых лучей, были положены в основу различных методов визуализации.
Стабильный рост производительности персональных компьютеров в начале 1990-х годов дал толчок развитию относительно недорогих приложений для трехмерного моделирования. Появление таких программных пакетов сделало 3D доступной для простых пользователей. При этом само моделирование перестало быть привилегией небольших групп ученых, занимающихся скучными исследованиями, или кинематографистов, имеющих доступ к мощным графическим станциям. Легкость в освоении, относительно небольшие требования к аппаратному обеспечению и поистине удивительные возможности таких систем обеспечили им быстрое распространение и большую популярность. Кроме того, развитие графических библиотек существенно способствовало популяризации программирования 3D-приложений, что еще более ускорило развитие и распространение трехмерной графики. В области дизайна и анимации вместе с производителями таких известных программ, как 3ds Max, Maya, SOFTIMAGE/XSI, LightWave 3D, на рынке появляются компании, занимающиеся разработкой узконаправленных специализированных модулей (плагинов) (Digimation, HABWare и пр.). В инженерном 3D-моделировании у «тяжелых» САПР-пакетов (CATIA, Unigraphics, Pro/ENGINEER) инициативу перехватывают более «легкие» и простые в освоении 3D-пакеты нового поколения: SolidWorks, Solid Edge, Inventor.
Следом за дизайном трехмерная графика незаметно проникла и в инженерное проектирование. Исторически сложилось так, что сфера промышленного проектирования жестко ограничена требованиями стандартов, которые касаются лишь плоского черчения. По этой причине переход на трехмерное моделирование в машиностроительном или архитектурном проектировании не был безболезненным. Однако богатство возможностей по созданию моделей сложных форм, легкость в проектировании и планировке, намного лучшие возможности для выявления ошибок на этапе проектирования и, самое главное, более наглядное представление объекта проектирования сделали свое дело. С середины 1990-х годов трехмерная графика стала широко применяться в инженерии.
Львиную долю среди программных средств для автоматизации инженерного проектирования занимают графические CAD-системы (Computer Aided Design – полуавтоматическое компьютерное проектирование). Они служат для создания трехмерных моделей машиностроительных агрегатов, изделий, зданий и т. п.,