пределах подпрограмм ввода-вывода, а не рассеяно по всему форматору.
Набор команд был подобран с таким расчетом, чтобы требуемый вывод можно было получить за один просмотр входных данных. Ни для одной команды алгоритм не должен требовать повторного просмотра ввода. Если для некоторых алгоритмов потребуется рабочее пространство, как, например, для алгоритма обработки сноски, то попробуйте применить двойную буферизацию вывода и использовать свободный буфер в качестве рабочего пространства. Для оценки времени работы укажем, что форматор, с помощью которого был получен английский оригинал настоящего издания, тратил на одну страницу вывода примерно 2 с времени ЦП, а написан он был на некоем диалекте языка Трак (см. гл. 28). Да и большинство других форматоров тратит на оформление каждой страницы вывода тоже примерно 1–2 с независимо от скорости ЭВМ, на которой они работают. Единственное разумное объяснение этому факту — то, что пользователи находят такую скорость приемлемой, и программисты соответственно не считают нужным тратить усилия на ускорение форматоров.
Керниган, Черри (Kernighan Ё. W., Cherry L. L.). A System for Typesetting Mathematics,
В этой статье описывается только система для набора математических формул, но система встроена в форматор текстов общего назначения. Сама статья, как, сообщается в журнале САСМ, является фотокопией с результата работы форматора и для публикации повторно не набиралась. Керниган и Черри, между прочим, продают свою систему.
Керниган, Плоджер (Kernighan В. W., Plouger P. J.). Software Tools. Addison-Wesley, Reading MA, 1976.
В книге Кернигана и Плоджера обсуждаются системы программного обеспечения, которые могут оказаться полезными при работе над большим (а пожалуй, и любым) проектом. Каждое такое средство, как и в этих этюдах, сначала обрисовывается в общих чертах, а затем формулируется в виде проекта. Одно из описываемых средств — форматор текстов. Даются также некоторые указания по реализации. Возможно, прежде чем браться за этот этюд, вы захотите сравнить свойства двух форматоров.
* Баяковский Ю. М., Мишакова С. Т. Автоматизированная система подготовки публикаций и документов (АСПИД), ИПМ АН СССР им. М. В. Келдыша. Препринт № 19, 1977.
Система АСПИД написана на Фортране и на машине БЭСМ-6 тратит на подготовку страницы вывода также около 2 с.
5
Победителей судят,
или Составление и оценка турнира
Едва ли не каждый из нас в свое время был болельщиком местной, чуть ли не самой сильной команды. Состоявшийся в конце сезона турнир должен был выявить чемпиона города, округа, штата, страны, мира или Вселенной. Но какое невезение — местные герои проиграли будущему победителю уже в первом круге турнира с немедленным выбыванием. Игра оказалась малоинтересной — никто даже не успел размяться. И ведь как обидно: самые настоящие слабаки в итоге занимают место, которое по праву должно принадлежать нашим парням, а болельщиков вместо волнующей борьбы в финале ждет убогое зрелище.
А виноват во всем турнир с немедленным выбыванием. Пусть имеется 2n команд, n > 0. Тогда в первом круге команда 1 играет с командой 2, команда 3 с командой 4, …, команда 2n ? 1 с командой 2n. Проигравшие вылетают, а победители выходят в следующий круг.
На рис. 5.1 изображен турнир восьми команд. Если предположить, что более сильная команда всегда выигрывает (т. е. что не бывает срывов), лучшая команда, очевидно, завоюет первое место. Однако второй участник финальной игры может занимать в общей табели о рангах лишь место 2n?1 + 1 при условии, что все более сильные команды оказались в одной группе с победителем. Победитель по мере своего продвижения выведет из розыгрыша хорошие команды, и слабой команде достанутся совсем никудышные соперники. Избежать подобной ситуации можно несколькими способами. Во-первых, команды (в дальнейшем будем называть их
Круг 1 | Победители |