Зачем может понадобиться разбирать терм на составляющие компоненты - функтор и его аргументы? Зачем создавать новый терм из заданного функтора и аргументов? Следующий пример показывает, что это действительно нужно.

Рассмотрим программу, которая манипулирует геометрическими фигурами. Фигуры - это квадраты, прямоугольники, треугольники, окружности в т.д. В программе их можно представлять в виде термов, функтор которых указывает на тип фигуры, а аргументы задают ее размеры:

        квадрат( Сторона)

        треугольник( Сторона1, Сторона2, Сторона3)

        окружность( R)

Одной из операций над такими фигурами может быть увеличение. Его можно реализовать в виде трехаргументного отношения

        увел( Фиг, Коэффициент, Фиг1)

где Фиг и Фиг1 - геометрические фигуры одного типа (с одним в тем же функтором), причем параметры Фиг1 равны параметрам Фиг, умноженным на Коэффициент. Для простоты будем считать, что все параметры Фиг, а также Коэффициент уже известны, т. е. конкретизированы числами. Один из способов программирования отношения увел таков:

        увел( квадрат( A), F, квадрат( А1) ) :-

                A1 is F*A

        увел( окружность( R), F, окружность( R1) ) :-

                R1 is F*R1

        увел( прямоугольник( А, В), F, прямоугольник( А1, В1)) :-

                A1 is F*A, B1 is F*B.

Такая программа будет работать, однако она будет выглядеть довольно неуклюже при большом количестве различных типов фигур. Мы будем вынуждены заранее предвидеть все возможные типы, которые могут когда-либо встретиться. Придется заготовить по предложению на каждый тип, хотя во всех этих предложениях по существу говорится одно и то же: возьми параметры исходной фигуры, умножь их на коэффициент и создай фигуру того же типа с этими новыми параметрами.

Ниже приводится программа, в которой делается попытка (неудачная) справиться для начала хотя бы со всеми однопараметрическими фигурами при помощи одного предложения:

        увел( Тип( Пар), F, Тип( Пар1) ):-

                Пар1 is F*Пар.

Однако в Прологе подобные конструкции, как правило, запрещены, поскольку функтор должен быть атомом, и, следовательно, переменная Тип синтаксически не будет воспринята как функтор. Правильный метод - воспользоваться предикатом '=..' . Тогда процедура увел будет иметь обобщенную формулировку, пригодную для фигур любых типов:

        увел( Фиг, F, Фиг1):-

                Фиг =.. [Тип | Параметры],

                умножспис( Параметры, F, Параметры1),

                Фиг1 =.. [Тип | Параметры)].

        умножспис( [ ], _, [ ]).

        умножспис( [X | L], F, [X1 | L1] ) :-

                X1 is F*X, умножспис( L, F, L1).

Наш следующий пример использования предиката '=..' связан с обработкой символьных выражений (формул), где часто приходится подставлять вместо некоторого подвыражения другое выражение. Мы определим отношение

Вы читаете Prolog
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату