При обратной связи результатов тестирования, когда большинство значений
будет меньше нуля и велика по модулю в силу отрицательного знака всех или почти всех произведений (
получится близкой к нулю.
Таким образом, произведение (
(6.4)
(Замечание, также как и в случае подсчета дисперсии, для различных прикладных задач в статистике удобнее делить не на
Для повышения сопоставимости оценок показателей связи по выборкам с различной дисперсией ковариацию делят на стандартные отклонения. Таким образом,
(6.5)
При исследовании связи между наборами данных необходимо правильно выбрать вид и форму показателя, зависящих от шкал, в которых представлены данные (см. подробнее в книге: [7]). В частности, для оценки связи между результатами выполнения учащимися двух заданий теста коэффициент корреляции Пирсона
(6.6)
где
Например, для рассматриваемого примера матрицы корреляция между результатами по 5-му и 6-му заданиям теста будет:
Результаты подсчета значений коэффициента корреляции между всеми заданиями для примера матрицы сведены в табл. 6.4.
Анализ значений коэффициента корреляции в табл. 6.4 позволяет выделить в категорию «плохих» 3-е и 8-е задания теста. Задание 3 отрицательно коррелирует с заданиями 7, 8, 9 и 10. О том, что «виновато» 3 -е, а не другие задания теста, свидетельствует анализ значений коэффициента корреляции в столбцах с номерами 7, 9 и 10. В них просматривается только один минус на месте, соответствующем заданию теста 3, которое в свою очередь отрицательно коррелирует с четырьмя заданиями теста. Аналогичная ситуация наблюдается для задания 8. Отрицательные значения коэффициента корреляции указывают на определенный просчет разработчиков в содержании заданий, которые рекомендуется из теста удалить. Наиболее распространенная причина появления отрицательной корреляции – отсутствие предметной чистоты содержания – нередко встречается при разработке самых разных тестов.
Понятно, что предметная чистота – скорее, идеализируемое, чем реальное требование к содержанию любого теста. Например, в тесте по физике всегда встречаются задания с большим количеством математических преобразований, в тесте по биологии – задания, требующие серьезных знаний по химии, в тесте по истории – задания, рассчитанные на выявление культурологических знаний, и т.п. Поэтому можно лишь стремиться к тому, чтобы при выполнении каждого задания доминировали знания по проверяемому предмету.
Таблица 6.4
Анализ 9-го столбца табл. 6.4 с максимальной суммой 4,6495, приведенной в конце, указывает на наличие ряда довольно высоких значений коэффициента корреляции (?9,8 = 0,6124; ?9,7 = 0,7638; ?9,10 = 0,6667), которые могут получить различную трактовку в зависимости от вида разрабатываемого теста. Для тематических тестов высокая корреляция между заданиями неизбежна, так как они в большинстве своем имеют слабо варьирующее исходное содержание, что вполне объяснимо назначением теста. Однако для итоговых тестов высокой корреляции между заданиями по возможности стараются избегать, поскольку вряд ли имеет смысл включать в итоговый тест несколько заданий, оценивающих одинаковые содержательные элементы. Поэтому в итоговых аттестационных тестах обычно стремятся к невысокой положительной корреляции, когда значения коэффициента варьируют в интервале (0; 0,3), и каждое задание привносит свой специфический вклад в общее содержание теста.
Далее с помощью подсчета значений точечного бисериального коэффициента корреляции можно оценить валидность отдельных заданий теста. Бисериальный коэффициент корреляции используется в том случае, когда один набор значений распределения задается в дихотомической шкале, а другой – в интервальной. Под эту ситуацию подпадает подсчет корреляции между результатами выполнения каждого задания (дихотомическая шкала) и суммой баллов испытуемых (интервальная или квазиинтервальная шкала) по заданиям теста.
Формула для вычисления значения точечного бисериального коэффициента