по своему строению мента-ну и цимолу. От ментана терпены отличаются меньшим содержанием водорода (т. е. обладают ненасыщенностью), а от цимола – большим содержанием водорода (т. е. являются гидрированными, хотя и не полностью, производными цимола).

Таким образом, терпены занимают промежуточное положение между цимолом – веществом ароматического ряда, и ментаном – полностью гидрированным производным цимола: С10Н14– цимол, С10Н16 – терпены, С10Н20 – ментан.

Терпены встречаются в природе в соке и смоле хвойных деревьев, а также во многих эфирных маслах ряда растений. Эфирные масла получают из различных частей растений, причем лучшие эфирные масла получают из цветов. Для получения эфирных масел пользуются различными методами; чаще всего их отгоняют с водяным паром, реже – извлекают органическими растворителями; существуют и другие способы получения. В эфирных маслах наряду с терпенами содержатся самые различные вещества, относящиеся к спиртам, альдегидам, кетонам и другим группам органических соединений.

28. Общие свойства терпенов

Все терпены – жидкости. Являясь неполностью гидрированными производными цимола, они содержат в молекулах двойные связи (одну или две) и поэтому способны присоединять бром, хлористый водород и т. д. Важное свойство терпенов – их способность окисляться кислородом воздуха. Процесс окисления терпенов очень сложен и протекает по-разному в сухом и влажном воздухе. В сухом воздухе происходит образование перекисных соединений, которые далее отдают свой кислород, превращаясь в окисные соединения. Окисляющие свойства долго стоявшего озонированного скипидара, основанные на присутствии в нем перекисных соединений, использовались ранее при применении такого скипидара в качестве противоядия, например при отравлении фосфором.

Терпены в зависимости от строения делятся на несколько групп, из которых наиболее большое значение имеют моноциклические и бициклические терпены.

Моноциклические терпены

Моноциклические терпены содержат в молекуле один цикл. Они присоединяют четыре атома брома, т. е. имеют две двойные связи. Представителем моноциклических терпенов может служить лимонен.

Лимонен имеет одну двойную связь в ядре – между первым и вторым атомами углерода – вторую – в боковой трехуглеродной цепи. Лимонен содержится во многих эфирных маслах, в частности в лимонном масле. Приятный запах лимонов зависит от лимонена, находящегося в эфирном масле лимонов; отсюда и возникло название «лимонен».

Лимонен содержится также в эфирных маслах некоторых хвойных растений, например в эфирном масле 28б сосновых игл. При перегонке с водяным паром хвои сосны и пихты получают «лесную воду» – жидкость с приятным ароматическим запахом. Бициклические терпены

Бициклические терпены содержат в молекуле два цикла. Их молекулы присоединяют по два атома брома, следовательно, бициклические терпены имеют одну двойную связь.

Различные группы бициклических терпенов обычно производят от углеводородов, не содержащих двойных связей, – карана, пинана и камфана, которые, кроме шестичленного цикла, содержат трех-, четырех– и пя-тичленные циклы. Соответственно, различают бицик-лические терпены групп карана, пинана и камфана.

При внимательном рассмотрении формул бицикли-ческих терпенов видно, что в построении их меньшего кольца принимает участие изопропильная группа Н3С-С-СН3, которая содержится также в ментане.

Наибольшее значение из бициклических терпенов имеет пинен, который относится к группе пинана.

Пинен – главная составная часть скипидаров, или терпентинных масел, получаемых из хвойных растений. Название «пинен» произошло от латинского названия pinus – сосна.

29. Ароматические углеводороды

Название «ароматические соединения» возникло на ранних этапах развития органической химии. К группе ароматических соединений относили ряд веществ, получаемых из природных смол, бальзамов и эфирных масел, обладающих приятным запахом. Впоследствии оказалось, что в основе ряда этих соединений лежит ядро углеводорода бензола С6 Н6. В связи с этим ароматическими соединениями стали называть все соединения, являющиеся производными бензола. Известно огромное количество ароматических соединений, из которых только очень небольшая часть обладает приятным ароматическим запахом.

Бензол и его гомологи

Подобно тому как метан является «родоначальником» всех предельных углеводородов, бензол считается «родоначальником» всех ароматических углеводородов. Ароматические углеводороды – это бензол и производные бензола, у которого один или несколько атомов водорода замещены радикалами.

Строение бензола

В течение нескольких десятилетий строение бензола было темой оживленных научных споров. Молекулярная формула бензола С6Н6 как будто говорит о большой ненасыщенности бензола, соответствующей ненасыщенности ацетилена (С2Н2). Тем не менее бензол в обычных условиях не вступает в реакции присоединения, характерные для непредельных углеводородов: он не присоединяет галогенов, не обесцвечивает раствора КМnО4. Для бензола более характерны реакции замещения, вообще свойственные предельным углеводородам.

Так, например, атомы водорода в бензоле замещаются галогенами:

С6Н6 + Вr2 > С6Н5Вг + НВг.

бромбензол

Важным шагом в выяснении строения бензола явилась теория о циклическом строении его молекулы, высказанная А. Кекуле в 60-х годах прошлого столетия. Экспериментальные данные для этой теории были получены нашим соотечественником Ф. Ф. Бейль-штейном и другими учеными. Было доказано, что од- нозамещенные бензола не имеют изомеров. Например, существует только один бромбензол (С6Н5Вг), один нитробензол (С6Н52) и т. д.

Если бы атомы углерода в бензоле были соединены в виде незамкнутой цепи, то тогда существовало бы не менее трех изомеров однозамещенных бензола, эти изомеры отличались бы положением заместителя (например, брома) у первого, второго или третьего атома углерода.

Совершенно ясно, что если атомы углерода в бензоле связаны в виде цикла, то тогда нет «начала» цепи, все атомы углерода равноценны, и изомеров у одно-замещенных бензола быть не может.

Циклическое строение бензола получило признание большинства химиков, но вопрос о валентности атомов углерода и характере их связей друг с другом еще служил предметом споров. В циклической формуле каждый атом углерода имеет свободную четвертую валентность. Так как прочные соединения со свободными валентностями неизвестны, нужно было предположить, что четвертые валентности всех шесть атомов углерода как-то насыщены друг другом.

30. Номенклатура и изомерия ароматических углеводородов

Номенклатура. Рациональные названия ароматических углеводородов обычно производят от названия «бензол», прибавляя название одного или нескольких радикалов, которые замещают в молекуле бензола атомы водорода. Так, углеводород С6Н8СН3 называют метил-бензол; углеводород С6Н4(СН3) (С2Н5) – метил-этилбензол и т. д.

Наряду с этим способом наименований иногда пользуются и другим: гомолог бензола рассматривают как производное углеводорода жирного ряда, в котором атом водорода замещен остатком бензола С6Н5, который называется фенилом. Тогда углеводород С6Н5-СН3 по этому способу называется фенилметаном.

Некоторые гомологи бензола, широко применяющиеся в практике, имеют прочно укоренившиеся эмпирические названия. Так, например, метилбензол С6Н5-СН3 называют толуолом; диметилбензол – С6Н4(СН3)2 – ксилолом и т. д.

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату