различные формы записи дерева: префиксную, инфиксную и постфиксную.
Возникает вопрос: каким образом представить узлы дерева, чтобы было наиболее удобно работать с ними? Можно представлять дерево с помощью массива, где каждый узел описывается величиной комбинированного типа, у которой информационное поле символьного типа и два поля ссылочного типа. Но это не совсем удобно, так как деревья имеют большое количество узлов, заранее не определенное. Поэтому лучше всего при описании дерева использовать динамические переменные. Тогда каждый узел представляется величиной одного типа, которая содержит описание заданного количества информационных полей, а количество соответствующих полей должно быть равно степени дерева. Логично отсутствие потомков определять ссылкой nil. Тогда на языке Pascal описание бинарного дерева может выглядеть следующим образом:
TYPE TreeLink = ^Tree;
Tree = record;
Inf: <тип данных>;
Left, Right: TreeLink;
End.
22. Примеры реализации операций
1. Построить дерево из з узлов минимальной высоты, или идеально сбалансированное дерево (количество узлов левого и правого поддеревьев такого дерева должны отличаться не более чем на единицу).
Рекурсивный алгоритм построения:
1) первый узел берется в качестве корня дерева;
2) тем же способом строится левое поддерево из nl узлов;
3) тем же способом строится правое поддерево из nr узлов;
nr = n – nl – 1
В качестве информационного поля будем брать номера узлов, вводимые с клавиатуры. Рекурсивная функция, реализующая данное построение, будет выглядеть следующим образом:
Function Tree(n: Byte): TreeLink;
Var t: TreeLink; nl,nr,x: Byte;
Begin
If n = 0 then Tree:= nil
Else
Begin
nl:= n div 2;
nr = n – nl – 1;
writeln('Введите номер вершины );
readln(x);
new(t);
t^.inf:= x;
t^.left:= Tree(nl);
t^.right:= Tree(nr);
Tree:= t;
End;
{Tree}
End.
2. В бинарном упорядоченном дереве найти узел с заданным значением ключевого поля. Если такого элемента в дереве нет, то добавить его в дерево.
Procedure Search(x: Byte; var t: TreeLink);
Begin
If t = nil then
Begin
New(t);
t^inf:= x;
t^.left:= nil;
t^.right:= nil;
End
Else if x < t^.inf then
Search(x, t^.left)
Else if x > t^.inf then
Search(x, t^.right)
Else
Begin
{обработка найденного элемента}
…
End;
End.
23. Понятие графа. Способы представления графа
Граф – пара G = (V,E), где V – множество объектов произвольной природы, называемых вершинами, а E – семейство пар ei = (vil, vi2), vijOV, называемых ребрами. В общем случае множество V и (или) семейство E могут содержать бесконечное число эле-ментов, но мы будем рассматривать только конечные графы, т. е. графы, у которых как V, так и E конечны. Если порядок элементов, входящих в ei, имеет значение, то граф называется ориентированным, сокращенно – орграф, иначе – неориентированным. Ребра орграфа называются дугами.
Если e = <u,v>, то вершины v и и называются концами ребра. При этом говорят, что ребро e является смежным (инцидентным) каждой из вершин v и и. Вершины v и и также называются смежными (инцидентными). В общем случае допускаются ребра вида e = <v, v>; такие ребра называются петлями.
Степень вершины графа – это число ребер, инцидентных данной вершине, причем петли учитываются дважды.
Вес вершины – число (действительное, целое или рациональное), поставленное в соответствие данной вершине (интерпретируется как стоимость, пропускная способность и т. д.).
Путем в графе (или маршрутом в орграфе) называется чередующаяся последовательность вершин и ребер (или дуг – в орграфе) вида v0, (v0,v1), v1, …, (vn –1,vn), vn. Число n называется длиной пути. Путь без повторяющихся ребер называется цепью, без повторяющихся вершин – простой цепью. Замкнутый путь без повторяющихся ребер называется циклом (или
контуром в орграфе); без повторяющихся вершин (кроме первой и последней) – простым циклом.
Граф называется связным, если существует путь между любыми двумя его вершинами, и несвязным – в противном случае.
Существуют различные способы представления графов.
1. Матрица инцидентности.
Это прямоугольная матрица размерности n ч m, где n – количество вершин, а m – количество ребер.
2. Матрица смежности.
Это квадратная матрица размерности n ч n, где n – количество вершин.
3. Список смежности (инцидентности). Представляет собой структуру данных, которая
для каждой вершины графа хранит список смежных с ней вершин. Список представляет собой массив указателей, i-ый элемент которого содержит указатель на список вершин, смежных с i-ой вершиной.
4. Список списков.
Представляет собой древовидную структуру данных, в которой одна ветвь содержит списки вершин, смежных для каждой.