потому эти показатели и соответствующие ряды динамики и называются моментными.
Другие показатели характеризуют итоги какого-либо процесса за определенный период (интервал) времени (сутки, месяц, квартал, год и т. п.). Такими показателями являются, например, число родившихся, количество произведенной продукции, ввод в действие жилых домов, фонд заработной платы и др. Величину этих показателей можно подсчитать только за какой-нибудь интервал (период) времени. Поэтому такие показатели и ряды их значений называются интервальными.
Из различного характера интервальных и моментных абсолютных показателей вытекают некоторые особенности (свойства) уровней соответствующих рядов динамики. В интервальном ряду величина уровня, представляющего собой итог какого-либо процесса за определенный интервал (период) времени, зависит от продолжительности этого периода (длины интервала). При прочих равных условиях уровень интервального ряда тем больше, чем больше длина интервала, к которому этот уровень относится.
В моментных же рядах динамики, где тоже есть интервалы (промежутки времени между соседними в ряду датами), величина того или иного конкретного уровня не зависит от продолжительности периода между соседними датами.
Каждый уровень интервального ряда уже представляет собой сумму уровней за более короткие промежутки времени. При этом единица совокупности, входящая в состав одного уровня, не входит в состав других уровней. Поэтому в интервальном ряду динамики уровни за примыкающие друг к другу периоды времени можно суммировать, получая итоги (уровни) за более продолжительные периоды (так, суммируя месячные уровни, получим квартальные, суммируя квартальные – получим годовые, суммируя годовые – многолетние).
Иногда путем последовательного сложения уровней интервального ряда за примыкающие друг к другу интервалы времени строится ряд нарастающих итогов, в котором каждый уровень представляет собой итог не только за данный период, но и за другие периоды начиная с определенной даты (с начала года и т. д.). Такие нарастающие итоги нередко приводятся в бухгалтерских и других отчетах предприятий.
В моментном динамическом ряду одни и те же единицы совокупности обычно входят в состав нескольких уровней. Поэтому суммирование уровней моментного ряда динамики само по себе не имеет смысла, так как получающиеся при этом итоги лишены самостоятельной экономической значимости.
Выше говорилось о рядах динамики абсолютных величин, являющихся исходными, первичными. Наряду с ними могут быть построены ряды динамики, уровни которых являются относительными и средними величинами. Они также могут быть либо моментными, либо интервальными.
В интервальных рядах динамики относительных и средних величин непосредственное суммирование уровней само по себе лишено смысла, так как относительные и средние величины являются производными и исчисляются путем деления других величин.
При построении и перед анализом ряда динамики нужно прежде всего обратить внимание на то, чтобы уровни ряда были сопоставимы между собой, так как только в этом случае динамический ряд будет правильно отражать процесс развития явления. Сопоставимость уровней ряда динамики – это важнейшее условие обоснованности и правильности выводов, полученных в результате анализа этого ряда. При построении динамического ряда надо иметь в виду, что ряд может охватывать большой период времени, в течение которого могли произойти изменения, нарушающие сопоставимость (территориальные изменения, изменения круга охвата объектов, методологии расчетов и т. д.).
При изучении динамики общественных явлений статистика решает следующие задачи:
1) измеряет абсолютную и относительную скорость роста либо снижения уровня за отдельные промежутки времени;
2) дает обобщающие характеристики уровня и скорости его изменения за тот или иной период;
3) выявляет и численно характеризует основные тенденции развития явлений на отдельных этапах;
4) дает сравнительную числовую характеристику развития данного явления в разных регионах или на разных этапах;
5) выявляет факторы, обусловливающие изменение изучаемого явления во времени;
6) делает прогнозы развития явления в будущем.
2. Основные показатели рядов динамики
При изучении динамики используются различные показатели и методы анализа, как элементарные, более простые, так и более сложные, требующие применения более сложных разделов математики.
Простейшими показателями анализа, которые используются при решении ряда задач (в первую очередь при измерении скорости изменения уровня ряда динамики), являются абсолютный прирост, темпы роста и прироста, а также абсолютное значение (содержание) 1% прироста. Расчет этих показателей основан на сравнении между собой уровней ряда динамики. При этом уровень, с которым производится сравнение, называется базисным, так как он является базой сравнения. Обычно за базу сравнения принимается либо предыдущий, либо какой-либо предшествующий уровень, например первый уровень ряда.
Если каждый уровень сравнивается с предыдущим, то полученные при этом показатели называются цепными, так как они представляют собой как бы звенья цепи, связывающей между собой уровни ряда. Если же все уровни связываются с одним и тем же уровнем, выступающим как постоянная база сравнения, то полученные при этом показатели называются базисными.
Часто построение ряда динамики начинают с того уровня, который будет использован в качестве постоянной базы сравнения. Выбор этой базы должен быть обоснован историческими и социально- экономическими особенностями развития изучаемого явления. В качестве базисного целесообразно брать какой-либо характерный, типичный уровень, например конечный уровень предыдущего этапа развития (или средний его уровень, если на предыдущем этапе уровень то повышался, то понижался).
Абсолютный прирост показывает, на сколько единиц увеличился (или уменьшился) уровень по сравнению с базисным, т. е. за тот или иной промежуток (период) времени. Абсолютный прирост равен разности между сравниваемыми уровнями и измеряется в тех же единицах, что и эти уровни:
? =yi ? yi?1,
? =yi ? y0,
где yi – уровень i-го года;
yi?1 – уровень предшествующего года;
y0 – уровень базисного года.
Уменьшение уровня по сравнению с базисным характеризует абсолютное уменьшение уровня.
Абсолютный прирост за единицу времени (месяц, год) измеряет
Цепные и базисные абсолютные приросты связаны между собой: сумма последовательных цепных приростов равна соответствующему базисному приросту, т. е. общему приросту за весь период.
Более полную характеристику роста можно получить только тогда, когда абсолютные величины дополняются относительными. Относительными показателями динамики являются темпы роста и темпы прироста, характеризующие
Как и другие относительные величины, темп роста может быть выражен не только в форме коэффициента (простого отношения уровней), но и в процентах. Как и абсолютные приросты, темпы роста для любых рядов динамики сами по себе являются интервальными показателями, т. е. характеризуют тот или иной промежуток (интервал) времени.
Между цепными и базисными темпами роста, выраженными в форме коэффициентов, существует определенная взаимосвязь: произведение последовательных цепных темпов роста равно базисному темпу роста за весь соответствующий период. Например:
Выраженный в процентах, темп прироста показывает, на