процесса, с его сущностью. В связи с этим абсолютные показатели и абсолютные величины должны иметь определенные единицы измерения, которые наиболее полно и точно отражали бы его сущность (содержание).
Абсолютные показатели являются количественным выражением признаков статистических явлений. Например, рост – это признак, а его значение – это показатель роста.
Абсолютный показатель должен характеризовать размер изучаемого явления или процесса в данном месте и в данное время, он должен быть «привязан» к какому-нибудь объекту или территории и может характеризовать либо отдельную единицу совокупности (отдельный объект) – предприятие, рабочего, либо группу единиц, представляющую часть статистической совокупности, или статистическую совокупность в целом (например, численность населения в стране) и т. п. В первом случае речь идет об индивидуальных абсолютных показателях, а во втором – о сводных абсолютных показателях.
Индивидуальные величины – абсолютные величины, характеризующие размеры отдельных единиц совокупности (например, количество деталей, изготовленных одним рабочим за смену, число детей в отдельной семье). Они получаются непосредственно в процессе статистического наблюдения и фиксируются в первичных учетных документах. Индивидуальные показатели получают в процессе статистического наблюдения за теми или иными явлениями и процессами как результат оценки, подсчета, замера фиксированного интересующего количественного признака.
Сводные величины – абсолютные величины, получаются, как правило, путем суммирования отдельных индивидуальных величин. Сводные абсолютные показатели получают в результате сводки и группировки значений индивидуальных абсолютных показателей. Так, например, в процессе переписи населения органы государственной статистики получают итоговые абсолютные данные о численности населения страны, о распределении его по регионам, по полу, возрасту и т. д.
К абсолютным показателям также можно отнести показатели, которые получаются не в результате статистического наблюдения, а в результате какого-либо расчета. Как правило, данные показатели имеют разностный характер и находятся как разность между двумя абсолютными показателями. Например, естественный прирост (убыль) населения находится как разность между числом родившихся и числом умерших за определенный период времени; прирост продукции за год находится как разность между объемом произведенной продукции на конец года и объемом произведенной продукции на начало года. При составлении долгосрочных прогнозов развития экономики страны рассчитывают предположительные данные о материальных, трудовых, финансовых ресурсах. Как видно из примеров, эти показатели будут абсолютными, так как имеют абсолютные единицы измерения.
Абсолютные величины отражают естественную основу явлений. Они выражают либо численность единиц изучаемой совокупности, ее отдельных составных частей, либо их абсолютные размеры в натуральных единицах, вытекающих из их физических свойств (таких, как вес, длина и т. п.), или в единицах измерения, вытекающих из их экономических свойств (это стоимость, затраты труда). Следовательно, абсолютные величины всегда имеют определенную размерность.
Кроме того, абсолютные статистические показатели всегда являются именованными числами, т. е. в зависимости от сущности описываемых ими процессов и явлений они выражаются в натуральных, стоимостных и трудовых единицах измерения.
Натуральные измерители характеризуют явления в свойственной им натуральной форме и выражаются в мерах длины, веса, объема и иного или количеством единиц, числом событий. К натуральным можно отнести такие единицы измерения, как тонны, килограммы, метры и т. д.
В ряде случаев используются комбинированные единицы измерения, представляющие собой произведение двух величин, выраженных в различных размерностях. Так, например, производство электроэнергии измеряется в киловатт-часах, грузооборот – в тонно-километрах и т. п.
В группу натуральных единиц измерения входят и так называемые условно-натуральные единицы измерения. Их применяют для получения суммарных абсолютных величин в случае, когда индивидуальные величины характеризуют отдельные разновидности продукции, близкие по своим потребительским свойствам, но отличающиеся, например, содержанием жира, спирта, калорийностью и т. п. При этом одна из разновидностей продукции принимается за условный натуральный измеритель, и к ней с помощью переводных коэффициентов, выражающих соотношение потребительских свойств (иногда трудоемкости, себестоимости и т. д.) отдельных разновидностей, приводятся все разновидности этого продукта.
Трудовые единицы измерения используют для характеристики показателей, которые позволяют оценить затраты труда, отражают наличие, распределение и использование трудовых ресурсов (например, трудоемкость выполненных работ в человеко-днях).
Натуральные, а иногда и трудовые измерители не позволяют получить сводные абсолютные показатели в условиях разнородной продукции. В этом плане универсальными являются стоимостные единицы измерения, которые дают стоимостную (денежную) оценку социально-экономическим явлениям, характеризуют стоимость определенной продукции или объема выполненных работ. Например, в денежной форме выражаются такие важные для экономики страны показатели, как национальный доход, валовый внутренний продукт, а на уровне предприятия – прибыль, собственные и заемные средства.
Наибольшее предпочтение в статистике отдается стоимостным единицам измерения, так как стоимостный учет является универсальным, однако он не всегда может быть приемлем.
Абсолютные показатели могут быть рассчитаны во времени и пространстве. Например, динамика численности населения Российской Федерации с 1991 по 2004 гг. отражается временным фактором, а уровень цен на хлебобулочные изделия по регионам Российской Федерации за 2004 г. характеризуется пространственным сравнением.
При учете абсолютных показателей во времени (в динамике) их регистрация может быть осуществлена на определенную дату, т. е. какой-либо момент времени (стоимость основных средств предприятия на начало года) и за какой-либо период времени (число родившихся за год). В первом случае показатели являются моментальными, во втором – интервальными.
С точки зрения пространственной определенности абсолютные показатели делят следующим образом: общие территориальные, региональные и локальные. Например, объем ВВП (валовый внутренний продукт) – общий территориальный показатель, объем ВРП (валовый региональный продукт) – региональный признак, численность занятых в городе – локальный признак. Следовательно, первая группа показателей характеризует страну в целом, региональные – конкретный регион, локальные – отдельный город, населенный пункт и т. д.
Абсолютные показатели не дают ответа на вопрос, какую долю имеет та или иная часть в общей совокупности, не могут охарактеризовать уровни планового задания, степень выполнения плана, интенсивность того или иного явления, так как они не всегда пригодны для сравнения, и поэтому часто используются лишь для расчета относительных величин.
3. Относительные статистические величины
Наряду с абсолютными величинами одной из важнейших форм обобщающих показателей в статистике являются относительные величины. В современной жизни мы часто сталкиваемся с необходимостью сравнивать и сопоставлять какие-либо факты. Не просто так существует поговорка: «Все познается в сравнении». Результаты любых сопоставлений выражаются при помощи относительных величин.
Относительные величины представляют собой обобщающие показатели, выражающие меру количественных соотношений, присущих конкретным явлениям или статистическим объектам. При расчете относительной величины берется отношение двух взаимосвязанных величин (преимущественно абсолютных), т. е. измеряется их соотношение, что очень важно в статистическом анализе. Относительные величины широко используются в статистическом исследовании, так как они позволяют провести сравнение различных показателей и делают такое сравнение наглядным.
Относительные величины исчисляются как отношение двух чисел. При этом числитель называется сравниваемой величиной, а знаменатель – базой относительного сравнения. В зависимости от характера изучаемого явления и задач исследования базисная величина может принимать различные значения, что приводит к различным формам выражения относительных величин. Относительные величины могут измеряться:
1) в коэффициентах; если база сравнения принята за 1, то относительная величина выражается целым