они выражены в процентах.
Ряды распределения, построенные по количественному признаку, называются вариационными рядами. Числовые значения количественного признака в вариационном ряду распределения называются вариантами и располагаются в определенной последовательности. Варианты могут выражаться числами положительными и отрицательными, абсолютными и относительными. Вариационные ряды делятся на дискретные и интервальные.
Дискретные вариационные ряды характеризуют распределение единиц совокупности по дискретному (прерывному) признаку, т. е. принимающему целые значения. При построении ряда распределения с дискретной вариацией признака все варианты выписываются в порядке возрастания их величины, подсчитыва-ется, сколько раз повторяется одна и та же величина варианта, т. е. частота, и записывается в одной строке с соответствующим значением варианта (например, распределение семей по числу детей). Частоты в дискретном вариационном ряду, как и в атрибутивном, могут быть заменены частостями.
В случае непрерывной вариации величина признака может принимать любые значения в определенном интервале, например распределение работников фирмы по уровню дохода.
При построении интервального вариационного ряда необходимо выбрать оптимальное число групп (интервалов признака) и установить длину интервала. Оптимальное число групп выбирается так, чтобы отразить многообразие значений признака в совокупности. Чаще всего число групп устанавливается по формуле:
k = 1 + 3,32lgN = 1,441lgN + 1
где k – число групп;
N – численность совокупности.
Например, предположим, что необходимо построить вариационный ряд сельскохозяйственных предприятий по урожайности зерновых культур. Число сельскохозяйственных предприятий 143. Как определить число групп?
k = 1 + 3,321lgN = 1 + 3,321lg143 = 8,16
Число групп может быть только целым числом, в данном случае – 8 или 9.
Если полученная группировка не удовлетворяет требованиям анализа, то можно произвести перегруппировку. Не следует стремиться к очень большому количеству групп, так как в такой группировке нередко исчезают различия между группами. Также надо избегать образования и слишком малочисленных групп, включающих несколько единиц совокупности, потому что в таких группах перестает действовать закон больших чисел и возможно проявление случайности. Когда не удается сразу наметить возможные группы, собранный материал сначала разбивают на значительное количество групп, а затем укрупняют их, уменьшая количество групп и создавая качественно однородные группы.
Таким образом, во всех случаях группировки должны быть построены так, чтобы образованные в них группы как можно полнее отвечали действительности, были бы видны различия между группами и не объединялись бы в одну группу существенно различающиеся между собой явления.
3. Статистические таблицы
После того как данные статистического наблюдения собраны и даже сгруппированы, их трудно воспринимать и анализировать без определенной, наглядной систематизации. Результаты статистических сводок и группировок получают оформление в виде статистических таблиц.
Статистическая таблица – таблица, которая дает количественную характеристику статистической совокупности и представляет собой форму наглядного изложения полученных в результате статистической сводки и группировки числовых (цифровых) данных. По внешнему виду она представляет собой комбинацию вертикальных и горизонтальных строк. В ней обязательно должны быть общие боковые и верхние заголовки. Еще одной особенностью статистической таблицы является наличие в ней подлежащего (характеристика статистической совокупности) и сказуемого (показателя, характеризующего совокупности). Статистические таблицы являются формой наиболее рационального изложения результатов сводки или группировки.
Подлежащее таблицы представляет ту статистическую совокупность, о которой идет речь в таблице, т. е. перечень отдельных или всех единиц совокупности либо их групп. Чаще всего подлежащее помещается в левой части таблицы и содержит перечень строк.
Сказуемое таблицы – это те показатели, с помощью которых дается характеристика явления, отображаемого в таблице.
Подлежащее и сказуемое таблицы могут располагаться по-разному. Это технический вопрос, главное, чтобы таблица была легко читаемой, компактной и легко воспринималась.
В статистической практике и исследовательских работах используются таблицы различной сложности. Это зависит от характера изучаемой совокупности, объема имеющейся информации, задач анализа. Если в подлежащем таблицы содержится простой перечень каких-либо объектов или территориальных единиц, таблица называется простой. В подлежащем простой таблицы нет каких-либо группировок статистических данных. Простые таблицы имеют самое широкое применение в статистической практике. Характеристика городов Российской Федерации по численности населения, средней зарплате и иному представляется простой таблицей. Если подлежащее простой таблицы содержит перечень территорий (например, областей, краев, автономных округов, республик и т. д.), то такая таблица называется территориальной.
Простая таблица содержит только описательные сведения, ее аналитические возможности ограничены. Глубокий анализ исследуемой совокупности, взаимосвязей признаков предполагает построение более сложных таблиц – групповых и комбинационных.
Групповые таблицы в отличие от простых содержат в подлежащем не простой перечень единиц объекта наблюдения, а их группировку по одному существенному признаку. Простейшим видом групповой таблицы являются таблицы, в которых представлены ряды распределения. Групповая таблица может быть более сложной, если в сказуемом приводится не только число единиц в каждой группе, но и ряд других важных показателей, количественно и качественно характеризующих группы подлежащего. Такие таблицы часто используются в целях сопоставления обобщающих показателей по группам, что позволяет сделать определенные практические выводы. Более широкими аналитическими возможностями располагают комбинационные таблицы.
Комбинационными называются статистические таблицы, в подлежащем которых группы единиц, образованные по одному признаку, подразделяются на подгруппы по одному или нескольким признакам. В отличие от простых и групповых таблиц комбинационные позволяют проследить зависимость показателей сказуемого от нескольких признаков, которые легли в основу комбинационной группировки в подлежащем.
Наряду с перечисленными выше таблицами в статистической практике применяют таблицы сопряженности (или таблицы частот). В основе построения таких таблиц лежит группировка единиц совокупности по двум или более признакам, которые называются уровнями. Например, население делится по полу (мужской, женский) и т. п. Таким образом, признак А имеет n градаций (или уровней) A1 A2, An (в примере n = 2). Далее изучается взаимодействие признака А с другим признаком – В, который подразделяется на k градаций (факторов) B1, B2, Bк. В нашем примере признак В – принадлежность к какой-либо профессии, а B1, B2,., Bk принимают конкретные значения (доктор, водитель, учитель, строитель и т. д.). Группировка по двум и более признакам используется для оценки взаимосвязей между признаками А и В.
В «свернутом» виде результаты наблюдений можно представить таблицей сопряженности, состоящей из n строк и k столбцов, в ячейках которых проставлены частоты событий nij, т. е. количество объектов выборки, обладающих комбинацией уровней Аi и Bj. Если между переменными A и B имеется взаимно-однозначная прямая или обратная функциональная связь, то все частоты nij концентрируются по одной из диагоналей таблицы. При связи не столь сильной некоторое число наблюдений попадает и на недиагональные элементы. В этих условиях перед исследователем стоит задача выяснить, насколько точно можно предсказать значение одного признака по величине другого. Таблица частот называется одномерной, если в ней табулирована только одна переменная. Таблица, в основе которой лежит группировка по двум признакам (уровням), которые табулируются по двум признакам (факторам), называется таблицей с двумя входами. Таблицы частот, в которых табулируются значения двух или более