Фотон, которым обмениваются электрон и партон, словно фиксирует моментальную фотографию глубокого строения протона. Время взаимодействия этого фотона с партоном намного меньше, чем характерное время взаимодействия самого партона с другими элементами протонной структуры. Поэтому фотон «видит» как бы застывшую картину — почти неподвижные партоны внутри протона.
После жесткого удара партон, получивший очень большой импульс за очень малое время — буквально это означает, что на него подействовала очень большая сила, — резко меняет направление движения, вызывает в протоне изрядную суматоху среди своих собратьев. Теперь протон практически не может сохранить целостность, скорее всего он развалится на несколько «партонных пачек», которые и будут зарегистрированы как новые реальные адроны.
Напротив, в соударениях с малой передачей импульса отдельные партоны получают лишь слабые толчки, связи между ними не могут разорваться, и протон испытывает взаимодействие с электроном как нечто целое. В этом случае вероятность развала протона мала. Поэтому в таких соударениях партонная структура протона просто не видна. Чтобы почувствовать партоны, электрон должен непременно передать протону очень большой импульс, то есть пройти как можно ближе к центру протона. При этом он будет тем отчетливей видеть партоны как особые частицы, чем быстрее фотон успеет поглотиться партоном. Но для быстрого поглощения необходимо, чтобы электрон передал партону и достаточно большую энергию. Чем больше эта энергия, тем отчетливее получается «фотография» партонной структуры.
В сущности, это похоже на известное каждому фотолюбителю правило нельзя получить хороший снимок, если характерный период движения объекта съемки того же порядка, что и время выдержки…
Качественно проявление партонной структуры очень напоминает картину прохождения электронного пучка не особенно большой энергии сквозь тонкую пленку вещества. Наблюдаемые при этом события четко делятся на два класса большинство электронов рассеивается на чрезвычайно малые углы, лишь слабо отклоняясь от оси начального пучка, и только малая часть разлетается на сравнительно большие углы. Первый тип событий обусловлен многократными случайными соударениями с атомами, на которых теряется очень малая часть импульса. Во втором случае происходит резкое соударение с атомными электронами — именно здесь и проявляется зернистая структура вещества пленки.
Не лишним будет и напоминание о резерфордовских экспериментах по обнаружению атомных ядер. В сущности, именно те соударения альфа-частиц с ядрами, в которых передавались большие импульсы, и альфа-частицы неизбежно отклонялись на большие углы, позволили увидеть ядерную структуру атомов.
Судя по этим аналогиям, экспериментальные результаты группы В. Панофского и их интерпретация Р. Фейнманом означали прорыв к своеобразному субэлементарному уровню. Еще бы! Ведь обнаружены бесструктурные, а следовательно, скорее всего истинно элементарные (!) составные части адрона!
Это впечатление еще более укрепилось, когда советские теоретики В. Матвеев, Р. Мурадян и А. Тавхелидзе из Объединенного института ядерных исследований в Дубне показали, что партоны, вероятнее всего, являются кварками. Выяснилось, что не только в глубоко-неупругом рассеянии электронов на адронах, но и в любом процессе, где адрону передается большой импульс, он (адрон) выглядит именно так, как этого требует кварковая модель. Барионы ведут себя в таких реакциях как система трех почти свободных кварков, а мезоны — как система из кварка и антикварка.
То, что именно кварки способны играть роль партонов — исходного строительного материала для адронов, — оказалось чрезвычайно полезным и глубоким представлением. Это представление вторглось и в такие, казалось бы, давно решенные проблемы, как структура атомного ядра.
Со школьной скамьи мы привыкли к тому, что ядро состоит из протонов и нейтронов. С другой стороны, поскольку каждый нуклон содержит три кварка, то ядра могут рассматриваться и как многокварковая система. Скажем, простейшее составное ядро — дейтрон — в большинстве ситуаций выглядит как связанное состояние протона и нейтрона, но в отдельных случаях его наверняка можно представлять как совокупность шести кварков. Эти сравнительно редкие состояния дейтрона и других ядер были открыты экспериментально. Пытаясь передать ядру очень большой импульс, электрон видит его как совокупность кварков, число которых в три раза превышает число нуклонов в этом ядре.
Теперь уместно немного приостановить нашу экскурсию в глубь адронов и разобраться с явно назревшим вопросом: сколько же существует картин строения представителей этого обширнейшего семейства микромира и как эти картины связаны между собой?
Во всех известных реакциях каждый адрон может быть представлен как определенная комбинация двух (мезоны) или трех (барионы) кварков. Опираясь на такую простую кварковую картину, можно составить все известные адроны с правильными значениями всех зарядов — электрического, барионного, «странности» и др. — и объяснить многие важные закономерности взаимодействия между частицами.
С другой стороны, в адроне присутствуют некоторые бесструктурные чрезвычайно малые частицы — партоны. На основе партонной картины хорошо объясняются закономерности глубоко-неупругого рассеяния, рассеяния адронов с большой передачей импульса, в общем, все те процессы, где исследователи пытаются заглянуть во внутренние области сильновзаимодействующих частиц.
И наконец, в процессах взаимодействия, где адронам передается относительно небольшой импульс, они выглядят как размазанные по области размером 10–13 сантиметра сгустки вещества.
Итак, перед нами три картины строения одного и того же объекта адрона. Эти картины, казалось бы, настолько различны, что может возникнуть подозрение — не противоречивы ли они? Насколько согласуются между собой различные представления об адронах?
На этот вопрос пока не существует окончательного ответа. Ведь мы не знаем еще, как выглядит полностью удовлетворительная теория адронов, а только такая теория будет способна согласовать между собой все известные из опыта данные, превратить множество отдельных набросков в полную картину строения частиц.
Однако само по себе сильное различие в трех картинах адронной структуры не служит основанием для каких-то противоречий между ними. Ведь представления о кварковой и партонной структуре и об адроне-облаке первоначально были развиты на основе несколько разных экспериментов и являются как бы разными проекциями одного объекта.
Скажем, профессиональный фотограф способен снять какой-либо предмет совершенно различным образом, так что почти никто и не догадается, что на двух фотографиях запечатлен, например, один и тот же мотоцикл. В одном случае обычная «Ява» будет похожа на себя, а в другом — на техническое чудо внеземной цивилизации. Все дело, как говорится, в ракурсе…
Современная точка зрения на структуру адронов сводится к тому, что все три картины их строения, в принципе, могут быть согласованы.
Попробуем теперь несколькими штрихами набросать ту приближенную схему, которую можно было бы назвать «адрон в разрезе». Для определенности будем говорить о протоне.
Итак, начнем с внешней оболочки. Она наиболее плотная и состоит из множества виртуальных мезонов. Эти мезоны непрерывно рождаются и гибнут и создают нечто вроде пульсирующего облака размером около 10–13 сантиметра. Наряду с мезонами и несколько глубже их могут существовать более тяжелые виртуальные частицы, скажем, пары протон — антипротон и т. д.
Если перенестись сразу к центру адрона, то там мы обнаружим три кварка — два пэ-кварка и один эн-кварк, которые обеспечивают определенное зарядовое состояние протона. Как вы помните, его электрический и барионный заряды равны плюс единице каждый, а «странность» равна нулю.
Таким образом, внешняя оболочка из виртуальных адронов полностью нейтральна — ее электрический, барионный и прочие заряды должны быть в среднем равны нулю, чтобы не нарушать привилегии кварков, которые и определяют величины наблюдаемых зарядов.
Эти три кварка в центре протона часто называют валентными именно потому, что они полностью задают заряды протона и определяют тем самым многие «правила игры», то есть ряд закономерностей, которым следует протон, взаимодействуя с другими частицами.
Такая аналогия заимствована из химии, где валентность атомов задает основные законы химических реакций. Правда, данной аналогией не стоит особенно увлекаться. В химии валентность связана просто с числом электронов во внешней оболочке атомов. Скажем, натрий (Na) имеет во внешней оболочке один электрон и активно стремится ее заполнить еще семью электронами. Поэтому он охотно вступает в контакт с хлором (Сl), имеющим во внешней оболочке как раз семь электронов. В результате соединения у атомов