крайней мере, у трития таких петель — уже почти две (у восьмерки — две петли); а если восьмерка — с перехлестом, то есть петли развернуты на 180 градусов, то тогда образуются две законченные петли с присасывающими воронками, расположенными с разных сторон.
Благодаря наличию у атомов водорода присасывающих воронок (валентности), они могут объединяться и объединяются в пары, то есть в молекулы. Очевидно, самое прочное соединение будет возникать в том случае, когда размеры атомов будут совпадать: протий с протием, дейтерий с дейтерием и так далее. Но по теории вероятности такие совпадения — маловероятны (еще раз в связи с этим напомним, что изотопов у водорода не три, а более четырех тысяч); поэтому в общей своей массе молекулы водорода будут состоять из разнокалиберных атомов, прочность соединения которых — не столь высока. Она будет ослабляться еще и от того, что у спарившихся разнокалиберных атомов не будут совпадать частоты их пульсаций. Если даже предположить, что произошло почти невероятное: соединились абсолютно одинаковые по размерам два протия, то и тогда прочность их соединения не будет абсолютной: наверняка их пульсации будут смещены по фазе (даже — в противофазе), и это ослабит молекулу.
Пользуясь моментом, выскажем предположение, что крупные атомы водорода (в районе дейтерия и, тем более, в районе трития) могут присоединять к себе по два мелких атома (протия).
У атомов водорода, как мы сказали, валентность выражается в наличии присасывающих воронок. У молекул эти воронки нейтрализованы, поэтому молекула водорода, как единое целое, казалось бы, нейтральна и к соединению с другими атомами не должна стремиться. Все так на самом деле и есть за исключением одного «но»: соединенные в пару приблизительно одинаковые по размерам атомы водорода образуют по контуру другую разновидность валентности — присасывающий желоб; с его помощью молекула водорода может присоединяться к другим атомам, имеющим подобную валентность, например к атомам металлов, создавая гидриды. Мешающая такому присоединению пульсация атомов водорода может быть в подобных случаях подавляться соседними атомами. С помощью присасывающих желобов молекулы водорода должны были бы соединяться и между собой, но мешают этому все те же стоячие тепловые поля, то есть пушистость молекул. Если же ее устранит, например замораживанием, то молекулы действительно начнут соединяться и создавать твердые тела, и эти тела будут обладать свойствами металлов: контурные присасывающие желоба их молекул будут образовывать непрерывные дорожки для электронов, а бугристые поверхности тел (у атомов водорода нет прямых участков) будут хорошо отражать свет и создавать характерный металлический блеск. Но для того, что бы «успокоить» атомы водорода, их нужно охладить до температуры минус 259,1 градуса Цельсия.
Подробнее о соединениях водорода с конкретными другими химическими элементами будем говорить при рассмотрении топологий атомов этих элементов.
4.2. Гелий
Гелий занимает вторую позицию в таблице Менделеева после водорода. Атомная масса гелия — 4,0026. Он представляет собой инертный газ без цвета. Его плотность — 0,178 грамм на литр. Сжижается гелий труднее всех известных газов лишь при температуре минус 268,93 градуса Цельсия и практически не отвердевает. Охлажденный до минус 270,98 градуса Цельсия гелий приобретает сверхтекучесть. Образуется гелий чаще всего в результате распада крупных атомов. На Земле он распространен в малых количествах, но на Солнце, где идет интенсивный распад атомов, гелия очень много. Все эти данные являются как бы паспортными и хорошо известны.
Займемся топологий гелия, и для начала определим его размеры. Учитывая, что атомная масса гелия в четыре раза больше водородной, а атом водорода в 1840 раз тяжелее электрона, получим массу атома гелия равной 7360 электронам; следовательно, общее количество эфирных шариков в атоме гелия составляет приблизительно 22 000; длина шнура атома и диаметр исходного тора соответственно равны 7360 и 2300 эфирным шарикам. Чтобы зримо представить соотношение толщины шнура исходного тора атома гелия и его диаметра, изобразим на листе бумаги ручкой окружность диаметром в 370 миллиметров, и пусть след от ручки имеет ширину в одну треть миллиметра; полученная окружность даст нам указанное представление. Один электрон (строенные эфирные шарики) будет занимать на нарисованной окружности всего лишь 0,15 миллиметров.
Скручивание исходного тора в законченную форму атома гелия происходит следующим образом. Сначала окружность сплющивается в овал, потом — в форму гантели, далее — в восьмерку, а затем петли восьмерки развертываются так, что возникает перехлест. Между прочим, перехлест у более крупных атомов не образуется, и объясняется это тем, что длина шнура у атома гелия пока еще не большая, и при стремлении средних точек шнура сблизиться — края (петли) вынуждены развернуться. Далее края изогнутся и начнут сближаться.
До этого момента топология атома гелия, как мы видим, схожа с топологией атома изотопа водорода — трития, но если у трития не хватало сил на замыкание краев (не хватало длины его шнура), то у гелия петли надвигаются одна на другую и таким образом замыкаются. Для того, чтобы убедиться в надежности соединения петель, достаточно проследить за расположением их присасывающих сторон: у внутренней петли она будет снаружи, а у внешней — изнутри.
Топологию атомов очень удобно представлять в виде проволочных моделей; для этого достаточно использовать в меру упругую, но достаточно пластичную проволоку. Атом водорода изобразится в виде обычного кольца. Увеличим длину куска проволоки в четыре раза (во столько раз атом гелия тяжелее атома водорода), свернем его в кольцо, спаяем концы и продемонстрируем процесс скручивания атома гелия. При скручивании мы должны постоянно помнить, что радиусы гибки не должны быть меньше радиуса кольца, представляющего собой атом водорода; это как бы условие, задаваемое упругостью шнура — торовых оболочек. (В натуре, напомним, минимальный радиус равнялся 285 эфирным шарикам.) Принятый минимальный радиус гибки определяет топологию всех атомов; и еще: следствием одинаковых радиусов гибки будут одинаковые размеры присасывающих петель (своего рода — их стандартизация), и поэтому-то они образуют устойчивую валентность, выраженную в способности соединять различные атомы между собой. Если бы петли имели различные размеры, их соединение было бы проблематичным.
Доводя процесс скручивания проволочной модели атома гелия до конца, мы обнаружим, что соединенные внахлест петли надвинуты одна на другую не до упора. Точнее говоря, они предпочли бы закрутиться еще дальше, но не пускает упругость шнура, то есть условие минимального радиуса. И при всякой попытке петель продвинуться навстречу еще дальше упругость шнура отбросит их назад; отскочив, они снова устремятся вперед, и снова упругость отбросит их назад; при этом атом гелия будет то съеживаться, то распускаться, то есть возникает пульсация. Пульсация, в свою очередь, породит стоячее тепловое поле вокруг атома и сделает его пушистым; так мы пришли к выводу, что гелий — газ.
На основании топологии можно объяснить и прочие физические и химические характеристики гелия. О его инертности, например, говорит то, что его атомов нет ни открытых присасывающих петель, ни присасывающих желобов: он не способен вообще соединяться с другими атомами, поэтому — всегда атомарен и практически не отвердевает. Цвета гелий не имеет потому, что у его атомов нет прямых «звучащих» участков шнуров; а сверхтекучесть у него возникает вследствие всякого отсутствия вязкости (слипание атомов), округлой формы и малого размера атома.
Как и у водорода, у гелия атомы не имеют одного размера: одни из них больше, другие — меньше, а в общем они занимают почти все весовое пространство от водорода (трития) до следующего за гелием лития; менее прочные изотопы гелия, конечно, давно уже распались, но и существующих в настоящее время можно насчитать не одну сотню.
В таблице Менделеева гелий лучше располагать не в конце первого периода — в одном ряду с водородом, а в начале второго периода перед литием, потому что его атом, как и атомы всего этого периода, представляет собой одиночную конструкцию (одиночный клубочек), в то время как атом следующего инертного газа неона выглядит уже в виде спаренной конструкции, похожей по этому признаку на атомы третьего периода.