Поле электронного давления — электрическое поле

Еще раз заявим, что нет никаких материалов, которые не пропускали бы в той или иной степени электроны; следовательно, они — электроны — есть везде. Натуральное давление электронов друг на друга образует так называемый электрический потенциал точки; изменение давления характеризует электрическое поле. Другими словами, под электрическим полем будем понимать распределение электронного давления в среде. Отсюда следует важный вывод о том, что электрическое поле без электронов не бывает: есть электроны — есть поле, нет электронов — нет поля. Никакого дальнодействия на электроны и электронов друг на друга, кроме непосредственного давления, не существует. Не может быть и отрицательного давления электронов: оно немыслимо.

Некоторого уточнения требует соотношение между плотностью электронов и их давлением. Если в идеальной эфирной среде избыточная плотность приравнивается к давлению (и то и другое определяется степенью деформаций элементарных шариков), то в атомарно-молекулярной среде давление и плотность электронов сильно расходятся.

Возьмем, например, воздух: атомы газов в нем, как мы уже говорили, обладают пушистыми свойствами. В сплошной своей массе воздух напоминает ворох пушистых тел (игрушек). Электроны тоже пушисты, поэтому они с трудом могут проникать между атомами, занимая пустоты. Этих пустот в воздухе немного, и, следовательно, электронов в нем также немного, то есть плотность их совсем небольшая; но при всем при том давление электронов друг на друга может быть очень и очень большим. Всякое пополнение газовой среды даже считанным количеством электронов будет существенно увеличивать их взаимное давление. Таково соотношение плотности и давления электронов в воздухе.

В «непушистых» средах, то есть в жидкостях и в твердых телах, плотность электронов может быть значительно выше: они могут занимать пустоты не только между атомами, но и внутри них, то есть атомы могут абсорбировать электроны. Абсорбирующая способность (электроноемкость) различных атомов — различная: у одних она — ниже, у других — выше, — но в любом случае «непушистые» атомы и молекулы поглощают (абсорбируют) не единицы и даже не сотни электронов, а тысячи.

Поэтому незначительное пополнение «непушистой» среды электронами практически не скажется на росте их взаимного давления. Соотношение плотности и давления электронов в жидких и твердых средах, как мы видим, совсем иное, чем в газах.

Электрическое поле может быть охарактеризовано в полной мере в том случае, если распределение электронного давления в нем буде представлено в виде градиентов, определяющих не само давление, а его изменение в пространстве и направление такого изменения (градиент — вектор).

Электрические явления. Молния.

Каждый из нас и чаще всего с восторгом (или, напротив, с испугом) наблюдал молнии — явление удивительное и производящее сильное впечатление. Образованный человек знает, что проявляется проскакивание электронов между облаками или между облаком и землей. Уточним наше понимание молнии в свете эфирной теории.

Электроны на Земле гибнут в больших количествах: часть из них «сгорает» в пламени химических реакций, в том числе и при обычном горении, но большая часть проникает в недра Земли и там исчезает, пополняя тепло планеты. Поэтому на поверхности Земли электронов не так уж и много. Значительно больше их в высоких слоях над атмосферой Земли, где они накапливаются как результат солнечного ветра и образуют электронную оболочку (радиационный пояс). Воздух атмосферы почти не проводит электроны: его пушистые атомы и молекулы образуют своего рода перину, которой окутана планета. Радиационный пояс из пушистых электронов можно по аналогии сравнить с пушистым покрывалом на перине атмосферы. Плотность электронов в этом покрывале очень высока; она — максимальная, какая только может быть; и давление электронов в нем очень высокое: в масштабе электрических величин оно равно 10 в девятой степени вольт.

По своей удельной эфирной плотности электроны могут быть отнесены к самым атомарно тяжелым газам, то есть они стремятся опуститься вниз на землю, оттесняя вверх все другие газы воздуха; но сделать это им не просто, так как они пушисты и пушисты все атомы и молекулы воздуха. Одного медленного просачивания электронов сквозь всю толщу атмосферы недостаточно для того, чтобы рассосать электронную оболочку; остается только надеяться на молнии: они решают задачу переноса электронов на землю очень просто и эффективно — пробоем; и помогают им в этом грозовые облака.

Когда в жаркий летний день нагретый воздух устремляется вверх, он может достигать высоты, где начинается граница радиационного пояса. Там пары воды конденсируются и переходят из состояния газа в жидкость и даже в лед, то есть молекулы воды теряют свою пушистость. Пользуясь благоприятным моментом, электроны радиационного пояса облепливают молекулы воды как только могут — сотнями и тысячами на каждую молекулу. Подъем облака в силу его инерции рано или поздно прекращается, и оно устремляется вниз, увлекая вместе с собой неисчислимое количество прилипших электронов. На низкой высоте происходит пробой воздуха, и электроны лавиной уходят в землю.

Что такое — пробой? Обратимся к аналогии — к пневматике. Допустим, у нас имеется ресивер с высоким давлением воздуха; трубка, соединенная с ресивером, уперта своим открытым концом в толстый слой пористого поролона. При этом воздух, скорее всего, будет потихоньку просачиваться сквозь поролон, но давление в трубке будет сохраняться высоким; это — исходное состояние. Теперь начнем постепенно внедрять трубку в поролон все глубже и глубже. В какой-то момент, естественно, произойдет прорыв воздуха сквозь оставшуюся толщу поролона — это и есть пробой: воздух под давлением разорвет поролон, раздвинет его и устремится по возникшему каналу.

Точно также возникает пробой воздуха атмосферы скопищем электронов грозового облака; нет ни какой разницы, если не считать яркой световой вспышки молнии, которой у пневматики, разумеется, нет. Свет порождает гибнущие в шнуре пробоя электроны. Гром, который мы слышим при грозе, представляет собой волну давления, возникшую в результате резкого раздвигания стенок канала, по которому устремляется поток электронов. Известно, что диаметр этого канала достигает двадцати сантиметров и более, а ток в нем может превышать 200 000 ампер. При подходе к земле молния расщепляется на искры, то есть общий канал распадается на рукава. Средняя скорость молнии равна 10 000 километров в секунду, а длина молнии иногда превышает 10 километров.

Как только давление электронов в канале упадет, атмосферное давление его захлопнет, и молния прекратится; произойдет еще один хлопок — кавитационный.

Пережим канала молнии атмосферным воздухом происходит самым неожиданным образом, и может случиться так, что не все электроны смогут выскочить из него и уйти в землю, и часть из них окажется запертой как бы в ловушке — в мешке; так рождается шаровая молния. Съежившись в клубочек, она будет шипеть и искриться, как шипят и искрятся провода высокого напряжения. Коснувшись токопроводящего предмета, шаровая молния уйдет в него; и лучше, если этим предметом будет не человек.

Электризация тел

Какое бы впечатление не производила на нас молния, более убедительные свидетельства существования электричества мы получаем в наши дни от работы электрических приборов и машин. Нагрев утюга, свет электрической лампы, голос радиоприемника, светящийся экран телевизора и многое другое и в быту и за пределами его — все связано с электричеством, все порождено им. И тем не менее сначала обратимся к осмыслению тех невзрачных проявлений движения электронов, с которых начинается изучение электричества школьниками.

Известно, что при трении предметов из некоторых материалов они электризуются; такой процесс происходит при трении стекла о шелк, янтаря или эбонита о шерсть, даже одной ткани по другой. Каков

Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату