приблизительный участок ДНК, на котором ген находится. Для этого нужна карта.

Генетические карты, как и любые другие, создаются путем обозначения объектов относительно друг друга. Скажем, нанося на карту Париж, картографы позиционируют его в пространстве, учитывая существование Лиона, Южной Нормандии, Атлантического побережья и прочих географических объектов Франции. Точно так же карты генетические основываются на положении генов относительно друг друга в хромосоме.

Само существование генетических карт стало возможным благодаря размножающимся половым путем биологическим видам, каждое поколение которых передает генетический материал следующему поколению в виде точных копий. Грегор Мендель полагал, что каждый ген наследуется самостоятельно, независимо от других, но был прав только отчасти. Нередко гены передаются и в виде сцепленных цепочек ДНК.

Судьбоносный для науки принцип генетического сцепления сформулировали в начале XX столетия Томас Хант Морган, «отец американской генетики», и его блестящий девятнадцатилетний ученик Алфред Генри Стёртевант. Экспериментируя с дрозофилами, они обнаружили, что некоторые признаки передаются в неизменяемых сочетаниях. Близлежащие на хромосоме гены с большой степенью вероятности перейдут от родителей к потомкам вместе, в паре: те же, которые расположены в отдалении друг от друга или вообще на разных хромосомах, наследуются, как и предполагал Мендель, поодиночке. Морган выделил признаки, передающиеся совместно, и рассчитал вероятность такого же их наследования в дальнейшем, а Стёртевант на основе этого открытия создал первую генетическую карту. На ней были отслежены связи между формой крыла, цветом глаз и окраской тела дрозофил — признаками, переходящими от поколения к поколению, как правило, сцепленно. Маленькие мушки оказались хорошо работающей моделью: как выяснилось, принцип генетического сцепления распространяется и на мышей, и на людей, и на все другие живые существа. Труд Стёртеванта стал основой для будущих генетических картографов, поставивших своей целью создание полной карты человеческого генома.

Она сложилась в современном виде только через десять лет после того, как Лейбл и Фридман в 1986 г. приступили к поискам ob-гена. Начинали они, однако, не на пустом месте. Благодаря усилиям предшественников уже были обнаружены некоторые болезнетворные гены и даже определено их местоположение: группа ученых из Бостона выделила ген одного из типов мышечной дистрофии, а команда Нэнси Уэкслер из Колумбийского университета, с которой, кстати, сотрудничал Лейбл, вплотную подошла к открытию гена, ответственного за возникновение болезни Гентингтона (хореи Гентингтона), особо часто встречающейся среди жителей венесуэльского побережья.

Эти достижения вселяли известный оптимизм. Обнаружение ob-гена казалось вполне вероятным. Исследователи уже локализовали множество «маркеров» — последовательностей ДНК, которые могли указать дальнейший путь. Трудность заключалась в том, что все эти опознавательные точки были определены у людей, а не у грызунов. Лейблу и Фридману предстояло самим обнаружить маркеры у лабораторных животных посредством трудоемкого процесса — кроссбридинга (межродного скрещивания), выделить парные гены и понять, какие характерные физические признаки наследуются по принципу генетического сцепления. Следуя за Морганом и Стёртевантом, Лейбл и Фридман вознамерились начать с уже картографированных генов и надеялись, продвигаясь по хромосомам в обратном направлении, сделать хотя бы черновой набросок карты, чтобы определить месторасположение ob-гена и его двойника — db-гена.

Лейблу ценой немалых усилий удалось получить гранты от Университета Рокфеллера и кое-каких других организаций. На эти деньги к работе над проектом были привлечены двое молодых сотрудников — Стримсон С. Чуа, выпускник Колумбийского университета, обладатель двух докторских дипломов, по медицине и философии, и Натан Бахари, студент-медик из Корнеллского университета. Чуа имел опыт исследования генов коров, наследственного материала, близкого к человеческому, а вот молекулярные карты мышей были для него в новинку. Бахари радовал сообразительностью и энтузиазмом, но к изысканиям подобного толка и масштаба приступал впервые. «Мы продолжали пользоваться ценными советами Дуга Колемана, с которым я был в постоянном контакте, — вспоминает Лейбл, — но до многого каждому из нас приходилось добираться на ощупь».

За год команда Фридмана-Лейбла проследила ob- и db-гены у тысячи животных и значительно усовершенствовала их генетические карты, но потом сделалось ясно, что маркеров, указывающих направление, безнадежно мало. Требовалось как-то ускорить процесс. Многообещающе выглядел метод микропрепарирования — создания маркеров путем скрупулезного разъединения каждой хромосомы на несколько фрагментов. Всего лишь несколько человек на земном шаре могли справиться со столь сложной техникой, а в США — ни один. Поэтому в 1987 г. Натан Бахари, тогда уже аспирант, отправляется для овладения микропрепарированием в Лондон, в лабораторию биолога Стивена Брауна.

Здесь, в лондонской больнице Святой Марии, за несколько лет до того впервые в истории приступили к освоению этого новейшего метода. «Увлекательное было время! Перспектива позиционного клонирования явственно просматривалась почти повсеместно, его возможные результаты в экспериментах с мышами- мутантами волновали умы», — вспоминает Браун, ныне глава отделов генетики млекопитающих в Медицинском исследовательском центре и Центре генома мышей в Харуэлле, Великобритания.

Микропрепарирование, требующее чрезвычайно точного рассечения хромосом, необыкновенно тонкий и сложный процесс. Бахари подошел к делу основательно. Он собственноручно изготовил лабораторную посуду, набор безупречных игл и пипеток. Клетки мышей Натан выращивал на био-культуре, потом добавлял солевой раствор, чтобы они набухли. Набухший материал выпускался из пипетки на предметное стекло микроскопа с высоты 80-180 см. Упав, клетки от удара лопались и высвобождали хромосомы. Затем предметное стекло надо было перевернуть и поместить под окуляр: теперь при взгляде через микроскоп хорошо различались взвешенные в капельке жидкости хромосомы. Нетрадиционное — и, прямо скажем, ненадежное — положение предметного стекла давало Бахари возможность добраться до них крошечным скальпелем.

Ежедневно проделывая виртуозные манипуляции, Натан четыре месяца провел в лаборатории Брауна, сыром и мрачноватом помещении, находившемся прямо над Паддингтонской линией метрополитена. «Каждый раз, когда слышался грохот поезда, приходилось хватать все, что может упасть, — иначе оно и впрямь упало бы и было бы утеряно», — вспоминает Бахари. Нередко за считанные минуты насмарку шли усилия нескольких дней. Не имея достаточно средств, чтобы снять комнату в отеле, Натан спал на раскладушке в лекционном зале, а душ принимал в больничном бассейне. Постоянно царивший в лаборатории сумрак угнетал, но не лишал энтузиазма: Бахари двигался по пути, который доступен немногим, и понимал это.

«Натан стал настоящим мастером микропрепаривания, это было сродни искусству, — говорит Лейбл. — И надо отдать ему должное: он победил».

Через несколько месяцев после возвращения в Университет Рокфеллера Бахари применил освоенную технику для создания молекулярных клонов, которые были нанесены на генетические карты гибридов, полученных при скрещивании ob- и db-мышей. У этой помеси расстояние между соседними ДНК оказалось еще меньше, чем у родителей. В серии статей, опубликованных в начале 1990-х гг., группа Лейбла-Фридмана изложила предварительные результаты идентификации ob-гена.

Охватившее участников каждодневной изнурительной работы воодушевление омрачалось усугубляющейся нервозностью, и по мере того как росла вероятность успешного клонирования ob-гена, напряженность в лаборатории перерождалась во взаимную враждебность. Всегда далекий от мягкости и деликатности Фридман то и дело устраивал разносы коллегам, порой несправедливые. Первым проект покинул Стримсон, за ним — Дон Сейгел, аспирант, пришедший в группу позже других, следом — один из лаборантов. «Усилиями Джеффа у нас царил не сегодняшний день молекулярной биологии, а настоящий „Апокалипсис сегодня“», — до сих пор не может успокоиться Сейгел, ныне преподающий в Медицинском колледже Альберта Эйнштейна. Любопытно заметить, что любимое прозаическое произведение Фридмана — роман «Сердце тьмы»,[24] легший в основу упомянутого мрачного кинофильма Фрэнсиса Копполы.

Фридману казалось, будто Лейбл и научный руководитель последнего, Джулс Хирш, пытаются играть главенствующую роль, отодвигая его, Джеффа, на второй план. Подозрительность росла, и в конце концов

Вы читаете Голодный ген
Добавить отзыв
ВСЕ ОТЗЫВЫ О КНИГЕ В ИЗБРАННОЕ

0

Вы можете отметить интересные вам фрагменты текста, которые будут доступны по уникальной ссылке в адресной строке браузера.

Отметить Добавить цитату