высотой 50 м; она и нанесла значительный ущерб деревне Сан-Мартино. Но в районе, расположенном вниз по течению, положение было еще более плачевным. Волна неслась, возвышаясь на 216 м над уровнем водохранилища; к счастью, она не коснулась деревни Кассо, однако некоторые дома здесь все же были разрушены сильным порывом ветра.
Затем эта огромная волна перекатилась через плотину, которая, к чести ее проектировщиков, осталась в полной сохранности. Ни один из видевших эту волну в живых не остался, однако по размерам участка земли, на котором была уничтожена вся растительность, можно представить, что через плотину промчалась стена воды высотой более 150 м. По ущелью Вайонт пронеслось 40 млн. м3 воды, и буквально через 2 мин после обрушения Маунт-Ток паводковая волна высотой 80 м достигла долины реки Пьяве, где раскинулся город Лонгароне. В одно мгновение он был смыт с лица Земли. Практически все здания превратились в груды обломков, все население погибло. Некоторые жители окрестных деревень, услышав страшный рев паводковой волны, устремились к возвышенным участкам, но их бег был слишком медленным по сравнению со скоростью ревущего потока. Волна разрушила также лежавшие на ее пути селения Пираго, Вильянова и Ривальта. Она неслась, словно смерч. Через 15 мин волны уже не было, но долина реки Пьяве являла жуткое зрелище: она была покрыта валунами, обломками камней и строений, среди которых, как на поле брани, лежали трупы 2117 человек.
Плотина на реке Вайонт стала почти бесполезной. Оползневая масса наполовину заполнила водохранилище. Почему же на горе Маунт-Ток произошел такой сильный оползень, и можно ли было его предсказать? Элементы залегания пород, присутствие прослоев мергеля в известняках, врезание ущелья Вайонт и наличие зон трещиноватости — все это указывало на возможность оползания. Тем не менее предполагалось, что этот процесс будет медленным, а обрушение материала у подошвы оползневого склона даже усилит со временем его устойчивость. Атмосферные осадки никоим образом не влияли на зарегистрированные подвижки и не были причиной оползня. Сильный дождь, прошедший в день катастрофы, только увеличил вес неустойчивой массы породы. Заполнение водохранилища и сопровождавшие его повышения давления по-ровых вод, несомненно, способствовали медленному оползанию, которое продолжалось в течение двух лет, но они не могли иметь никакого отношения к внезапному обрушению, происшедшему 9 октября 1963 г. Уровень воды в водохранилище также не оказывал существенного воздействия на верхнюю часть оползневого массива.
Механизм внезапного движения может быть объяснен двумя причинами. После оползня было замечено, что главная плоскость скольжения сечет слоистость; иными словами, произошло срезание толщи пород, а не просто соскальзывание вдоль плоскостей напластования. Кроме того, регистрация подвижек, проведенная в одной из буровых скважин до октябрьского оползня, показала, что породы в приповерхностной зоне двигались быстрее, чем на глубине. Это может свидетельствовать о наличии разлома, который активизировался, после того как в неравномерно перемещающихся породах накопился запас энергии, достаточный для мгновенного обрушения оползневого массива. При оползании склона, несомненно, сыграло свою роль и изменение уровня грунтовых вод, которое было следствием инженерных работ при строительстве водохранилища. Но оно было лишь второстепенным фактором в этом катастрофическом оползне, который, вероятно, все равно был неизбежным и ждал лишь своего часа. Если все это так, то надо думать, что водохранилище Вайонт просто нельзя было размещать на той площади, где его построили.
Оползни в рыхлых породах
Неуплотненные рыхлые отложения и слаболитифицированные осадочные породы легко деформируются, даже если в них нет трещин и разрывов, обычно вызывающих обрушение твердых коренных пород. В инженерной геологии горные породы, на которых предполагается вести строительство, называются грунтами. Особая наука — механика грунтов — при помощи лабораторных опытов, а также на основании математического анализа проб грунта позволяет рассчитать устойчивость склонов, предупредить возможную опасность или разрешить имеющиеся спорные вопросы. При гражданском строительстве особенно серьезные проблемы возникают в том случае, когда осадки и породы неоднородны. Обнаружить неоднородность пород бывает нелегко. Эта неоднородность может быть обусловлена присутствием мелких трещин, незначительных структурных изменений, развившихся вкрест напластования или ранее существовавших поверхностей обрушения, которые в данный момент кажутся устойчивыми. Поверхности обрушения особенно широко распространены, хотя их и трудно обнаружить, в оползневых районах; они могут быть связаны с отложениями, образовавшимися в различных климатических условиях. Оползневые участки, подвижные в древности, при многолетней мерзлоте и современном климате могут сохранять устойчивость до тех пор, пока в районе не начнутся строительные работы; тогда движение этих участков может возобновиться. Поэтому инженер-геолог должен сделать все необходимое, чтобы не вызвать развитие новых оползней и не привести в движение старые.
В 50-х годах нашего века в одном из районов Лос-Анджелеса периодически возобновлялись проявления оползней, вызывавшие значительные разрушения. В результате судебного расследования, начатого по инициативе группы удрученных домовладельцев, ответственность за случившееся была отчасти возложена на власти округа Лос-Анджелес, которые планировали строительство зданий и дорог в этом районе. Администрация округа проиграла это дело и заплатила домовладельцам более 5 млн. долл.
Основной причиной оползней в неуплотненных горных породах обычно является отсутствие в данном грунте сопротивления сдвигу, поводом для которого может стать деятельность человека. В районе города Ментона на юге Франции вырубили оливковые деревья, чтобы создать на этом месте плантацию гвоздик, приносящих гораздо большую прибыль. Однако при этом не учли возможных последствий. В результате того что грунт потерял связующую основу, роль которой играли корни деревьев, возникли оползни, которые унесли 11 человеческих жизней.
В Чехословакии над городом Гандлова были распаханы участки склонов, которые раньше использовались как пастбища. В дождливый сезон 1960 г. неожиданно резко повысился уровень вод и склоны утратили устойчивость; 40 млн. т почвы начало сползать вниз по склону. Над городом нависла угроза. Введенная в действие аварийная дренирующая система остановила движение за два месяца, но к этому времени было разрушено уже 150 домов. У города Уайтхорс на плато Юкон в Канаде были вырублены деревья на краю 60-метровой террасы. Это также повлекло за собой обрушение склонов. После того как на месте вырубленных деревьев была расчищена площадь для строительства дороги, возникло множество оползней и грязевых потоков, обрушившихся на улицы города. Остановить их удалось лишь благодаря активной программе дренирования и возобновлению растительного покрова у кромки террасы.
Чтобы вызвать движение потенциального оползня, достаточно придать склонам, сложенным рыхлыми породами, большую крутизну. Это может быть вызвано воздействием естественных причин, например, подмывом береговых обрывов морем. В Бартоне на южном побережье Англии, где берега сложены третичными глинами и песками, часто происходят оползни, развивающиеся вследствие сдвига по плоскостям напластования пород. Многие дома, расположенные над береговым обрывом, находятся под постоянной угрозой быть разрушенными. Севернее, к востоку от города Гулль, береговая линия характеризуется быстрой эрозией, не ослабевающей со времен Римской империи. Обрывистые берега высотой до 12 м, сложенные относительно однородной валунной глиной, постоянно обрушаются здесь вследствие оползней. При этом дороги и деревни постепенно перемещаются в сторону приливно-отливной полосы.
На побережье Тихого океана к юго-западу от центра города Сан-Франциско береговые обрывы имеют высоту 120–180 м. Слагающие их пески плиоцен-плейстоценового возраста весьма неустойчивы, тем более что по северной оконечности этого оползневого района проходит активный разлом Сан-Андреас. Оползание пород в большинстве случаев происходит по относительно водонепроницаемым пластам алеврита и глины. Но на крутых обрывах пески обрушаются и сами по себе, будучи недостаточно прочными, чтобы противостоять атакам моря.1'' Проходившее здесь шоссе первоначально располагалось вдоль берегового уступа, Такое соседство всегда было чревато опасностью. С 1950 по 1957 г. шоссе закрывали 17 раз, в